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Chapter 1

Introduction

1.1 Background Information

The well-known theorem of Schur (see for example [38]) states that if A is a
complex m × m matrix, then there exists a unitary m × m matrix U , such
that U−1AU is an upper triangular matrix. In other words, each square com-
plex matrix can be reduced to upper triangular form by a unitary similarity
transformation. For pairs of square complex matrices, the following result was
obtained by McCoy [42].

Theorem 1.1.1 Let A,Z be a pair of complex m × m matrices. Then the
following two statements are equivalent:

1. There exists an invertible m ×m matrix S, such that both S−1AS and
S−1ZS are upper triangular matrices.

2. For each polynomial p(λ, µ) in the non-commuting variables λ and µ, the
m×m matrix p(A,Z)(AZ − ZA) is nilpotent.

A pair of m × m matrices A,Z which satisfies the statements of Theorem
1.1.1 is said to admit simultaneous reduction to upper triangular form. The
proof of Theorem 1.1.1 in [42] is rather involved. Elementary proofs of this
theorem have been obtained in [23] and [28]. The theorem is made more
explicit for certain pairs of matrices in [34] and [35]. Further, a recent extension
of Theorem 1.1.1 is given in [45]. The literature on this subject, which includes
a paper of Frobenius [27] of almost a century ago, is extensive. For more
information and references, see [36]. Generalizations of Theorem 1.1.1 to an
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2 CHAPTER 1. INTRODUCTION

infinite dimensional context has been obtained in [37] and [43]; see also Section
1.3.

This thesis also deals with simultaneous reduction to triangular forms.
However, the emphasis is not on simultaneous reduction to ”the same”, e.g.
upper, triangular form, but on simultaneous reduction to ”complementary”
triangular forms. As we shall see later on, the motivation for studying this
issue comes from systems theory. But let us first give the definition and state
two of the earliest results.

Let A and Z be m × m matrices. We say that the pair A, Z admits
simultaneous reduction to complementary triangular forms, if there exists an
invertible matrix S (not necessarily unitary) such that S−1AS is an upper
triangular matrix and S−1ZS is a lower triangular matrix.

Here are two early results about this notion. The first result was implicit in the
proof of Theorem 1.6 in [6]; for an explicit statement, see [5]. Theorem 1.1.2
below also appears in Chapter 2 as Theorem 2.2.1, as is indicated between
brackets. The second result appeared in [7].

Theorem 1.1.2 (Theorem 2.2.1) Let A, Z be a pair of m × m matrices.
If either A or Z is diagonalizable, then the pair A,Z admits simultaneous
reduction to complementary triangular forms.

Theorem 1.1.3 Let A,Z be a pair of m×m matrices, such that rank(A−Z) =
1 and such that σ(A) ∩ σ(Z) = ∅. Then the pair A,Z admits simultaneous
reduction to complementary triangular forms.

If a pair of m ×m matrices A,Z admits simultaneous reduction to upper
triangular form, we may assume without loss of generality, that the invertible
m × m matrix S involved can be chosen to be unitary. For complementary
triangular forms, this is not the case: There exist pairs of m×m matrices A,Z
that admit simultaneous reduction to complementary triangular forms, for
which the invertible m×m matrix S involved can not be taken unitary. This
already indicates that simultaneous reduction to upper triangular form and
simultaneous reduction to complementary triangular forms are quite different
matters. Nevertheless, a connection between the two notions is formulated in
the following proposition, which is proved in [16].

Proposition 1.1.4 Let A and Z be m ×m matrices. The pair A,Z admits
simultaneous reduction to complementary triangular forms if and only if there
exists a positive definite m×m matrix H, such that the pair A,H−1Z∗H admits
simultaneous reduction to upper triangular form.
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The collection of pairs of m×m matrices that admit simultaneous reduc-
tion to complementary triangular forms is denoted by C(m). At the end of
Section 2.3, the collections of low order matrices C(2) and C(3) are described
completely. For m ≥ 4, a full description of C(m) is not known. One could
hope for a reasonable general description by combining Proposition 1.1.4 and
McCoy’s theorem (Theorem 1.1.1). Unfortunately, the existence problem of
the positive definite matrix H in Proposition 1.1.4 turns out to be as com-
plicated as the study of simultaneous reduction to complementary triangular
forms itself.

Altogether, there are no non-trivial results concerning the general case.
On the other hand, quite some satisfactory results are obtained for pairs of
matrices, taken from certain classes of matrices. Results in this direction have
been obtained by several authors; see [7], [12],[13], [14], [15], and [26]. Some of
these results are stated in Section 2.2. It should be mentioned that Theorem
2.2.2 from that section, which deals with pairs of first companion matrices,
is connected to the Two Machine Flow Shop Problem from job scheduling
theory; see the end of Section 2.4 for more details and references.

Now let us give a motivation for studying complementary triangular forms
for pairs of matrices. We shall do this by making a connection with systems
theory. Consider the linear dynamical system

(Σ)





x′(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + u(t) t ≥ 0
x(0) = 0

, (1.1)

where x(t) is an m-vector, u(t) and y(t) are n-vectors, and A,B and C are
matrices of the appropriate sizes. The equations represent a system Σ with
input u(t) and output y(t) (at time t) as illustrated below.

Σ- -u y

By taking the Laplace transform of (1.1), and by cancelling the Laplace trans-
form x̂(λ) of x(t), we obtain that the Laplace transforms û(λ) and ŷ(λ) of,
respectively, the input vector u(t) and the output vector y(t) are related as
follows:

ŷ(λ) = W (λ)û(λ).

Here W (λ) is the so-called transfer function of Σ, given by

W (λ) = In + C(λIm − A)−1B. (1.2)
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The n×n matrix function W (λ) is rational, i.e., its entries are the quotient of
two polynomials. Further, W (λ) is analytic at infinity with value W (∞) = In,
the n× n identity matrix. In the following, we shall consider factorizations of
such transfer functions which lead to cascade decompositions of the underlying
systems. A more detailed survey of this material from [6] is presented in
Section 2.1.

It can be shown that all rational n× n matrix functions W (λ) analytic at
infinity with W (∞) = In can be written in realization form (1.2) for certain
matrices A, B and C. The smallest possible integer m for which a given ratio-
nal matrix function W (λ) admits a realization (1.2) is called the MacMillan
degree of W (λ) and is denoted by δ(W ). One may interpret the integer δ(W )
as a measure of complexity of the corresponding system Σ. In fact, it equals
the number of poles of W (λ) counted according to their pole multiplicities (cf.
[6]).

To put factorizations of these rational matrix functions in perspective,
we will first discuss the scalar case: The quotient w(λ) = p(λ)/q(λ) of two
polynomials of degree m is a scalar rational function. We will assume that
the polynomials are monic, i.e., have leading coefficient equal to one, so that
w(∞) = 1. The scalar function w(λ) has Macmillan degree δ(w) = m if and
only if p(λ) and q(λ) have no roots in common. The Fundamental Theorem
of Algebra, applied both to p(λ) and q(λ), then yields

w(λ) =

(
λ− α1

λ− β1

) (
λ− α2

λ− β2

)
· · ·

(
λ− αm

λ− βm

)
,

where α1, α2, . . . , αm are the roots of p(λ), and β1, β2, . . . , βm are the roots of
q(λ). Note that

wk(λ) =
λ− αk

λ− βk

= 1 +
βk − αk

λ− βk

, k = 1, . . . ,m

are scalar rational functions of MacMillan degree one. Therefore, each scalar
rational function w(λ) of Macmillan degree m, with w(∞) = 1, is the product

w(λ) = w1(λ)w2(λ) · · ·wm(λ)

of m scalar rational functions of MacMillan degree one.
We will now discuss this type of factorization for rational matrix functions.

Rational matrix functions of MacMillan degree one are called elementary ra-
tional matrix functions. Such a function is of the form

W (λ) = In +
1

λ− α
cbT , (1.3)
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where α is a scalar and b and c are n-vectors. A complete factorization of a
minimal realization (1.2) is a factorization

W (λ) = W1(λ)W2(λ) · · ·Wm(λ) (1.4)

into m = δ(W ) elementary rational matrix functions

Wk(λ) = In +
1

λ− αk

ckb
T
k , k = 1, . . . , m.

Each elementary rational matrix function Wk(λ) corresponds to an ”elemen-
tary” system Σk. In this manner, the complete factorization (1.4) corresponds
to the cascade decomposition

Σm Σ1
- - - -u y

of the system Σ into ”elementary” systems Σ1, . . . , Σm. The question of which
rational matrix functions admit a complete factorization is answered by the
following theorem, which appeared in [5] and [7].

Theorem 1.1.5 (Theorem 2.1.2) A rational matrix function W (λ) = In +
C(λIm−A)−1B of MacMillan degree m admits a complete factorization if and
only if the pair of m×m matrices A,A− BC admits simultaneous reduction
to complementary triangular forms.

Not all rational matrix functions admit a complete factorization. For ex-
ample, the rational 2× 2 matrix function

W (λ) =

(
1 −1

λ2

0 1

)

does not have this property; see also Example 2.4.3.
Up to so far, known material concerning complementary triangular forms

and its connection with systems theory has been presented. In the next two
sections, an outline is given of the new results in the thesis. Section 1.2
concerns the first part, and Section 1.3 concerns the second part of the thesis.

1.2 Finite Matrices

The first new result we shall discuss here is closely related to Theorem 1.1.5.
As mentioned in the previous section, not all rational matrix functions admit
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a complete factorization. Recall that in the definition of a complete factoriza-
tion, we required the elementary factors to be of a specific type, as in (1.3). If
more general types of elementary factors are allowed (e.g. non-square ones),
then the situation becomes different; see [52].

The factorization result we are about to present also involves elementary
factors of the specific form (1.3), as in the case of complete factorization.
However, we will allow the number of elementary factors to be larger than
the MacMillan degree of the rational matrix function under consideration. In
terms of [6], this means that the factorizations need not be minimal. The
smallest number of factors that is needed to factorize a given rational matrix
function W (λ) into elementary factors is denoted by ρ(W ), and a factorization
into ρ(W ) factors is called a quasicomplete factorization. We now state the
factorization result.

Theorem 1.2.1 (Theorem 2.4.2) Each non-trivial rational matrix function

W (λ) = In + C(λIm − A)−1B

admits a quasicomplete factorization. In fact, the number of factors involved
in such a factorization satisfies the estimates

δ(W ) ≤ ρ(W ) ≤ 2δ(W )− 1. (1.5)

The first inequality in (1.5) is obvious, the second one requires a non-trivial
proof that uses the Pole Assignment Theorem from systems theory. Another
aspect of the proof is that it starts with a minimal realization W (λ) = In +
C(λIm−A)−1B, from which another realization W (λ) = In + C̃(λIρ− Ã)−1B̃
is constructed. The matrices Ã, B̃ and C̃ are particular extensions of the
matrices A,B and C, constructed in such a way that the pair Ã, Ã − B̃C̃
admits simultaneous reduction to complementary triangular forms.

A special type of extensions of those mentioned in the last paragraph are
extensions with zeroes. This type of extensions leads to the following problem,
which, by the way, also comes up in the study of complementary triangular
forms in an infinite dimensional context (see Chapter 5).

Let A1 and Z1 be m1×m1 matrices. Does there exist a nonnegative integer
m2, such that the pair of (m1 +m2)× (m1 +m2) matrices A1⊕Om2 , Z1⊕Om2

admits simultaneous reduction to complementary triangular forms? In other
words, does the pair A1, Z1 admit simultaneous reduction to complementary
triangular forms after extension with zeroes?
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Note that we include the case when the pair A1, Z1 admits simultaneous re-
duction to complementary triangular forms without extension, i.e., the case
when the integer m2 can be taken zero.

In Section 3.2, an example is given of a pair of 4× 4 matrices A1, Z1 which
does not admit simultaneous reduction to complementary triangular forms, but
obtains this property after extension with one zero. In short, (A1, Z1) 6∈ C(4),
while (A1 ⊕ 0, Z1 ⊕ 0) ∈ C(5).

In Section 3.3 up to and including Section 3.8, it is shown that for all pairs
of matrices, that are taken from classes of matrices for which a transparent
description of simultaneous reduction to complementary triangular forms is
known, e.g. for pairs of first companion matrices, the situation is different
from the example in Section 3.2. For these pairs A1, Z1, the following will
be shown: If m2 is a nonnegative integer such that (A1 ⊕ Om2 , Z1 ⊕ Om2) ∈
C(m1+m2), then also (A1, Z1) ∈ C(m1). We may conclude that for such a pair,
extending with zeroes does not produce the property of simultaneous reduction
to complementary triangular forms, unless the pair had this property to begin
with.

As was mentioned before, the problem of complementary triangular forms
after extensions with zeroes comes up in the infinite dimensional setting. The
following result is obtained there as a by-product.

Proposition 1.2.2 (Corollary 5.3.3) If the pair of m1×m1 matrices A1, Z1

admits simultaneous reduction to complementary triangular forms after exten-
sion with zeroes, then (A1 ⊕ Om2 , Z1 ⊕ Om2) ∈ C(m1 + m2) for a nonnegative
integer m2 that satisfies the estimate

m2 ≤ 8m2
1 − 3m1.

Even in the general case, the estimate in Proposition 1.2.2 is probably not
sharp. Before we turn to the infinite dimensional setting, one more point
about quasicomplete factorization has to be made. In addition to an earlier
remark with respect to the Two Machine Flow Shop Problem, we mention that
there are strong indications that the concept of quasicomplete factorization is
related to certain aspects of this topic from job scheduling theory.

1.3 Bounded Operators

In the second part of the dissertation, the notion of complementary triangular
forms for pairs of bounded operators on an infinite dimensional Banach space
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is considered. A precise description of what is meant by a bounded linear
operator in upper triangular form is given in terms of so-called maximal nests
of invariant subspaces. A nest of subspaces is a collection of subspaces which
is linearly ordered by inclusion. Maximal nests of subspaces are nests that are
not properly contained in any other nest. Further, a subspace M is invariant
for the linear operator A, if x ∈ M implies Ax ∈ M , so AM ⊆ M .

A linear operator A acting on a Banach space X is called upper triangular
with respect to a maximal nest of subspaces M, if M consists of subspaces
that are invariant for A. To illustrate the definition, we give two examples.
The first example is very simple: Let

U =




0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




denote the backward shift on l2(Z
+). If {ek | k ∈ Z+} denotes the standard

basis in l2(Z
+), then U is upper triangular with respect to the maximal nest

of subspaces

M = {span{e1, . . . , ek} | k ∈ Z+} ∪ {(0), l2(Z
+)}.

The second example, which is quite different from the finite dimensional set-
ting, is the Volterra operator of integration V , acting on L2(0, 1). It is given
by

V f(x) =
∫ x

0
f(t)dt,

and it is upper triangular with respect to the continuous maximal nest of
subspaces

M = {L2(τ, 1) | 0 ≤ τ ≤ 1}.
Indeed, the subspaces (0 ≤ τ ≤ 1)

L2(τ, 1) = {f | f ∈ L2(0, 1), f = 0 a.e. on (0, τ)}
are invariant for V . In fact, this is the only maximal invariant nest of subspaces
for V , hence V is unicellular; see for example [30] or [48].

It is well-known, that each compact operator on a Banach space has a
maximal nest of invariant subspaces; see [1]. This result can be seen as an



1.3. BOUNDED OPERATORS 9

infinite dimensional analogue to Schur’s theorem. Recall that an operator
is compact, if it maps the unit ball into a compact set. Further, a bounded
operator A is quasinilpotent, if σ(A) = {0}. The analogue to McCoy’s theorem
for pairs of compact operators on an infinite dimensional Banach space is
provided by the following result from [37].

Theorem 1.3.1 Let A and Z be compact operators acting on a Banach space
X. Then A and Z have a common maximal nest of invariant subspaces if and
only if for each polynomial p(λ, µ) in the non-commuting variables λ and µ,
the compact operator p(A,Z)(AZ − ZA) is quasinilpotent.

Before we define complementary triangular forms for a pair of bounded
operators on a Banach space, we return to the finite matrix case (see Section
3.1). A pair of m×m matrices A, Z admits simultaneous reduction to comple-
mentary triangular forms if and only if there exists a collection of projections
P = {Pk | 0 ≤ k ≤ m}, such that the collections {Ran Pk | 0 ≤ k ≤ m}
and {Ker Pk | 0 ≤ k ≤ m} are maximal nests of invariant subspaces for A
and Z respectively. With the natural ordering on projections, the collection
of projections P is a maximal nest of projections.

In order to extend the notion of complementary triangular forms to pairs
of bounded operators on an infinite dimensional Banach space X, we need to
consider nests of projections on X. In Chapter 4, it is explained that the most
straightforward definition that comes to mind, namely that of maximal nests
of projections, does not really work. One needs the somewhat more restricted
notion of a simple nest of projections, which is introduced in Section 4.1.

With this notion available to us, we introduce complementary triangular
forms for pairs of bounded operators on a Banach space. It is convenient to
give such a definition by describing the relevant collection of pairs of bounded
operators.

The collection C(X) consists of pairs of bounded operators A, Z acting on
X with the following property: There exists a simple nest of projections P on
X, such that AP = PAP , and PZ = PZP for all P ∈ P .

Theorem 4.1.3 in Section 4.1 states that a nest of projections is simple if and
only if the collections of subspaces {Ran P | P ∈ P} and {Ker P | P ∈ P} are
maximal nests of subspaces. It follows that if P is a simple nest of projections,
such that AP = PAP and PZ = PZP for all P ∈ P , then {Ran P | P ∈ P}
and {Ker P | P ∈ P} are maximal nests of invariant subspaces for A and Z
respectively.

For examples of simple nests of projections, we refer to the end of Section
4.1. The aim of the subsequent sections in Chapter 4 is to put the definition
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of a simple nest of projections in a broader perspective. Section 4.2 considers
nests of projections from a topological point of view. Section 4.3 studies nests
of projections on reflexive Banach spaces. In this particular setting, converses
are obtained to results from the preceding two sections.

In Chapter 5, complementary triangular forms for pairs of finite rank oper-
ators is considered. The following lemma, established in section 5.1, is useful
to study such pairs.

Lemma 1.3.2 (Lemma 5.1.1) Let A and Z be finite rank operators on a
Banach space X. Then there exist subspaces M, N ⊆ X, such that M⊕N = X,
dim M = m < ∞, and

A =

(
AM O
O ON

)
, Z =

(
ZM O
O ON

)
,

where AM and ZM are the restrictions of A and Z to M , and where ON denotes
the zero operator on N .

Since AM and ZM are acting on the m-dimensional subspace M , they can
be identified with m ×m matrices by fixing a basis in M . We introduce the
following terminology: The triple (M, N, {AM , ZM}) with the properties as in
Lemma 1.3.2 is called a matrix reduction for the pair of finite rank operators
A, Z. The following definition of complementary triangular forms uses the
notion of a matrix reduction. Again, we give the definition by describing the
relevant collection of pairs of finite rank operators.

The collection Cf (X) consists of those pairs of finite rank operators A, Z,
such that there exists a matrix reduction (M, N, {AM , ZM}) for the pair, with
(AM , ZM) ∈ C(m), where m = dim M .

Theorem 5.3.1 in Section 5.3 shows that if the pair of finite rank operators
A, Z satisfies (A,Z) ∈ C(X), then (A,Z) ∈ Cf (X). The other inclusion
Cf (X) ⊆ C(X) holds at least in the cases when X is a Hilbert space or when
X is a Banach space with a Schauder basis; see Section 5.3.

Let a pair of finite rank operators A,Z be given, together with a ma-
trix reduction (M,N, {AM , ZM}) for the pair. In principle, it is possible
that (A,Z) ∈ Cf (X), but that on the other hand, (AM , ZM) 6∈ C(m), where
m = dim M . This is due to the fact that a matrix reduction for a pair of
finite rank operators is not unique. It turns out that (A,Z) ∈ Cf (X) if and
only if the pair of m×m matrices AM , ZM admits simultaneous reduction to
complementary triangular forms after extension with zeroes; see Proposition
5.3.2.
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One of the most basic results on complementary triangular forms for pairs
of finite matrices is Theorem 1.1.2. It also underlies the proof of the fact that
each rational matrix function admits a quasicomplete factorization. One might
hope for an extension of this result to the infinite dimensional context. It has
been an element of surprise (and to a certain extent of disappointment) that
such a generalization does not hold true. Not even when one assumes both
operators under consideration to be diagonalizable and compact.

Indeed, in Section 6.3, pairs of diagonalizable compact operators A, Z on
l2(Z

+) are constructed, for which there exists no invertible operator S, such
that S−1AS is upper triangular, and S−1ZS is lower triangular with respect to
the standard basis in l2(Z

+). The construction of these pairs of diagonalizable
compact operators uses a unitary infinite matrix, that does not admit lower-
upper factorization, even after independently permuting rows and columns.
Also, a pair of compact operators A,Z is presented, with Z diagonalizable,
such that there exists no bounded nest of projections P , with AP = PAP and
PZ = PZP for all P ∈ P . Finally, positive results are obtained for pairs of
bounded operators, where one of the operators is of finite rank.

1.4 Notational Remarks

We will now clarify some notational conventions, used throughout this dis-
sertation. The set of all integers is indicated by Z. The set of all strictly
positive (negative) integers is denoted by Z+ (Z−). If zero is included, write
Z+

0 (Z−0 ). The set of all complex numbers is denoted by C. The symbol ⊆
denotes inclusion, where equality may hold, the symbol ⊂ denotes inclusion,
where equality does not hold, i.e., proper inclusion.

If X is a vector space, then the extended integer dim X denotes its dimen-
sion. All vector spaces in this thesis are complex. By an operator between
two vector spaces we will always mean a linear mapping. If T is an operator
acting on X, then Ran T = {Tx | x ∈ X}, Ker T = {x ∈ X | Tx = 0}, and
rank T = dim Ran T .

If X is a Banach space, then a linear submanifold Y ⊆ X is called a
subspace, if it is closed in the norm topology. If X1 and X2 are subspaces in
a Banach space X, then X1 + X2 = {x1 + x2 | x1 ∈ X1, x2 ∈ X2} denotes
the smallest linear submanifold in X, that contains both X1 and X2. In
general, X1 + X2 need not be closed. In the case when X1 ∩ X2 = (0), we
write X1 + X2 = X1 ⊕ X2. Further, if Y1, Y2 ⊆ X are subspaces, such that
Y1⊕ Y2 = X, then this direct sum is called a decomposition of X. If Y ⊆ X is
a subspace, the quotient Banach space is written as X/Y = {x + Y | x ∈ X}.
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The conjugate space of a Banach space X, the Banach space of all bounded
linear functionals on X, is denoted by X∗.

If the linear operator T : X −→ X acts from X into X, and if X = X1⊕X2,
then write

T =

(
T11 T12

T21 T22

)
: X1 ⊕X2 −→ X1 ⊕X2,

where Tkl : Xk −→ Xl denotes the compression of T to the relevant subspaces.
If T12 = T21 = O, then write T = T11⊕T22. If M ⊆ X is a subspace, then AM

denotes the compression of A to the subspace M . The identity operator and
zero operator on the vector space X are denoted by IX and OX respectively.
For a bounded operator T on X, let ρ(T ) and σ(T ) denote, respectively, the
resolvent set and the spectrum of T .

Let I denote an arbitrary index set, and let Xi denote sets for i ∈ I. Then
write

⋂{Xi | i ∈ I} = {x | x ∈ Xi for all i ∈ I},

⋃{Xi | i ∈ I} = {x | x ∈ Xi for some i ∈ I}.

If Xi ⊆ X are subsets in a Banach space, then span{Xi | i ∈ I} denotes the
closed linear hull of all Xi, i.e., the smallest subspace in X, that contains all
Xi.

The index and glossary indicate on which page the specific notion or symbol
is defined or explained. If a notion is defined on a certain page, it is printed
in emphasized font. Numbering of theorems, propositions, etc. is related to
the section in which they occur. For example, Theorem 2.2.1 can be found in
Section 2.2.
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Chapter 2

Quasicomplete Factorizations

The main topic of this chapter is factorization of rational matrix functions into
elementary factors. The factorizations under consideration need not be mini-
mal. Section 2.1 reviews minimal factorizations of rational matrix functions,
and its connection with simultaneous reduction to complementary triangular
forms. The latter notion is the main subject of Section 2.2, which gives an
overview of known results, and of Section 2.3, where new results in this di-
rection are presented. Finally, in Section 2.4, a new factorization theorem is
proved.

2.1 Rational Matrix Functions

In this section, known material from systems theory is reviewed, from which
the main subject of this dissertation originates. For more background infor-
mation, the reader is referred to [6] and [7], and the references given there.

An n × n rational matrix function W (λ) = ( wij(λ) )n
i,j=1 is an n × n

matrix with rational functions wij(λ) as its entries. In this chapter, all rational
n × n matrix functions W (λ) are assumed to be analytic at ∞, with value
W (∞) = In, the n× n identity matrix. From systems theory it is known (see
for example Theorem 2.2 in [6]), that such a matrix function W (λ) can be
written in the form

W (λ) = In + C(λIm − A)−1B, λ ∈ ρ(A), (2.1)

where the matrices A,B and C are of the appropriate sizes. An expression of
the form (2.1) is called a realization of W (λ). The smallest possible integer m
for which a given rational matrix function W (λ) admits a realization (2.1) is

15
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called the MacMillan degree of W (λ), and is denoted by δ(W ). If m = δ(W ),
then (2.1) is called a minimal realization. An equivalent requirement for (2.1)
to be a minimal realization is that the pair of matrices A,B is controllable,
i.e.,

Ran B + Ran(AB) + · · ·+ Ran(Am−1B) = Cm,

and that the pair of matrices C,A is observable , i.e.,

Ker C ∩Ker(CA) ∩ · · · ∩Ker(CAm−1) = (0).

The trivial rational matrix function W (λ) = In satisfies δ(W ) = 0.
By the state space isomorphism theorem ([6], Theorem 3.1), to be stated

below, all minimal realizations for a given rational matrix function are mutu-
ally similar.

Theorem 2.1.1 Let W (λ) be a rational matrix function, and let

W (λ) = In + C(λIm − A)−1B = In + K(λIm − F )−1G

be two minimal realizations. Then there exists an invertible m×m matrix S,
such that CS = K, S−1AS = F , and S−1B = G.

If (2.1) is a (not necessarily minimal) realization for W (λ), then the inverse
W−1(λ) is given by the realization

W−1(λ) = In − C(λIm − A×)−1B, λ ∈ ρ(A×),

where A× = A−BC. Note that δ(W−1) = δ(W ).
If W1(λ), W2(λ) and W (λ) are rational matrix functions, then W (λ) =

W1(λ)W2(λ) denotes a factorization of W (λ). If the minimal realizations of
the factors are given by

Wj(λ) = In + Cj(λImj
− Aj)

−1Bj, j = 1, 2,

then the realization

W (λ) = W1(λ)W2(λ) =

In +
(

C1 C2

) [
λIm1+m2 −

(
A1 B1C2

O A2

)]−1 (
B1

B2

)
(2.2)
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is called a product realization of W (λ). The MacMillan degree satisfies the
sublogarithmic property

δ(W ) ≤ δ(W1) + δ(W2).

In the case when δ(W ) = δ(W1) + δ(W2), i.e., when the product realization
(2.2) is a minimal realization of W (λ), the factorization W (λ) = W1(λ)W2(λ)
is called a minimal factorization.

A rational matrix function of MacMillan degree one is called an elementary
rational matrix function. A minimal realization of an elementary rational
matrix function W (λ) is of the form

W (λ) = In +
1

λ− α
cbT ,

where α is a complex number, and cbT is an n× n matrix of rank one (b, c are
n-vectors here). The inverse of W (λ) is given by

W (λ)−1 = In − 1

λ− α×
cbT ,

where α× = α− bT c.
Let W (λ) be an n × n rational matrix function with minimal realization

as in (2.1), so δ(W ) = m. If W (λ) admits a factorization

W (λ) = W1(λ) · · ·Wm(λ),

where W1(λ), . . . , Wm(λ) are elementary rational matrix functions, we say that
W (λ) admits a complete factorization. Note that a complete factorization is
minimal. A necessary and sufficient condition for complete factorization of a
rational matrix function in terms of the realization matrices is given by the
following theorem (Theorem 6.1 in [7]). We will recapitulate its instructive
proof.

Theorem 2.1.2 Let W (λ) be a rational n × n matrix function with mini-
mal realization (2.1). Then W (λ) admits a complete factorization if and only
if there exists an invertible m × m matrix S, such that S−1AS is an upper
triangular matrix, and S−1A×S is a lower triangular matrix.

Proof The only if part is proved as follows. Assume that the minimal
realization W (λ) = In + C(λIm − A)−1B admits a complete factorization
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W (λ) = W1(λ) · · ·Wm(λ), and let the factors be given by the minimal realiza-
tions

Wj(λ) = In +
1

λ− αj

cjb
T
j , j = 1, . . . , m.

Then the product realization of W (λ) is given by

W (λ) = In + C̃(λIm − Ã)−1B̃,

where

Ã =




α1 bT
1 c2 · · · bT

1 cm

0 α2
. . .

...
...

. . . . . . bT
m−1cm

0 · · · 0 αm




,

B̃ =




bT
1

bT
2
...

bT
m




, C̃ =
(

c1 c2 · · · cm

)
. (2.3)

Computation yields

Ã× = Ã− B̃C̃ =




α×1 0 · · · 0

bT
2 c1 α×2

. . .
...

...
. . . . . . 0

bT
mc1 · · · bT

mcm−1 α×m




,

with α×j = αj−bT
j cj for 1 ≤ j ≤ m. This product realization is again minimal,

so the state space isomorphism theorem (Theorem 2.1.1) provides that there
exists an invertible m×m matrix S, such that

S−1AS = Ã, S−1A×S = Ã×,

and in particular, that S−1AS is upper triangular, and S−1A×S is lower tri-
angular.

To prove the if part, let S be an invertible m×m matrix, such that S−1AS
is upper triangular, and S−1A×S is lower triangular. It is not difficult to see
that Ã = S−1AS, B̃ = S−1B and C̃ = CS can be written in the form (2.3).
The factorization W (λ) = W1(λ) · · ·Wm(λ) can now easily be derived from
the product realization W (λ) = In + C̃(λIm − Ã)−1B̃. 2
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2.2 Complementary Triangular Forms

Theorem 2.1.2 in the previous section motivates the study of the following
property:

A pair of m×m matrices A, Z admits simultaneous reduction to comple-
mentary triangular forms, if there exists an invertible m ×m matrix S, such
that S−1AS is an upper triangular matrix and S−1ZS is a lower triangular
matrix.

Clearly, not all pairs of m×m matrices A, Z have this property; for exam-
ple, consider the case when A = Z is non-diagonalizable. The collection of all
pairs of m×m matrices that admit simultaneous reduction to complementary
forms, which we will denote by C(m), has been studied by various authors (cf.
[5], [7], [12], [13], [15] and [26]).

In this section, a concise exposition of known results on simultaneous re-
duction to complementary triangular forms is given. Theorem 2.2.1 below first
appeared in [6], Theorem 3.4, in terms of complete factorization of rational
matrix functions. The result as stated below appeared in [5], Theorem 3.2.
The proof of this theorem, as given in [7], Theorem 1.2, will be postponed until
Section 6.2, where analogues of and counterexamples to this theorem for pairs
of bounded operators acting on an infinite dimensional space are discussed.

Theorem 2.2.1 Let A and Z be m×m matrices. If either A or Z is diago-
nalizable, then the pair A, Z admits simultaneous reduction to complementary
triangular forms.

Most results on simultaneous reduction to complementary triangular forms
are concerned with pairs of matrices that belong to certain classes of matrices.
First, we will state two results for pairs of companion matrices. Recall that a
first companion matrix is of the form

Ca =




0 1

0
. . .
. . . 1

0 1
−a0 −a1 · · · −am−2 −am−1




, (2.4)

where a0, . . . , am−1 are complex numbers. Note that there is a one-to-one
correspondence between monic polynomials of degree m and first companion
matrices, given by the equation
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det(λ− Ca) = a0 + a1λ + · · ·+ am−1λ
m−1 + λm.

The generalized eigenvectors of a first companion matrix are determined by
the corresponding eigenvalues as follows. If α is an eigenvalue for the m×m
first companion matrix Ca with algebraic multiplicity n, then the vectors

x1(α) =
(

1, α, · · · , αm−1
)T

,

xk(α) =
1

(k − 1)!
(

d

dα
)k−1x1(α), k = 2, . . . , n,

satisfy (A − α)x1(α) = 0 and (A − α)xk(α) = xk−1(α) for k = 2, . . . , n. In
other words, the vectors x1(α), . . . , xn(α) form a Jordan chain of Ca.

At this point, we also introduce some general terminology concerning ma-
trices. A vector β = (β1, . . . , βm)T is called a spectral vector for an m × m
matrix B, if β1, . . . , βm are the eigenvalues of B, counted according to their
algebraic multiplicities. If T = ( Tij )m

i,j=1 denotes a complex m ×m matrix,
then diag T = (T11, . . . , Tmm)T denotes the diagonal vector of T . In particular,
the diagonal vector of an upper or lower triangular matrix is a spectral vector
for that matrix.

A pair of m×m matrices A, Z is said to admit simultaneous reduction to
complementary triangular forms with diagonals

α = (α1, . . . , αm)T , ζ = (ζ1, . . . , ζm)T , (2.5)

whenever there exists an invertible m×m matrix S, such that S−1AS is upper
triangular, S−1ZS is lower triangular, and

diag(S−1AS) = α, diag(S−1ZS) = (ζm, . . . , ζ1)
T .

In this case, we will write (A,Z) ∈ C(α, ζ) .

In Chapter 3, where a geometrical description of simultaneous reduction to
complementary triangular forms is given, it will be justified that the spectral
vector ζ appears in reversed order on the diagonal of S−1ZS.

The reversed identity or rotation matrix R, defined by Rek = em−k+1 for k =
1, . . . , m, transforms upper triangular matrices into lower triangular matrices
and vice versa, i.e., T is an upper triangular m×m matrix if and only if R−1TR
is a lower triangular m ×m matrix. Also, R−1 = R. Using this matrix, it is
immediate that (A,Z) ∈ C(α, ζ) if and only if (Z,A) ∈ C(ζ, α).
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The following theorem, that describes simultaneous reduction to comple-
mentary triangular forms for pairs of first companion matrices, is taken from
[7], Theorem 3.2.

Theorem 2.2.2 Let A and Z be first companion m ×m matrices. Then the
pair A, Z admits simultaneous reduction to complementary triangular forms
with diagonal vectors α and ζ as in (2.5), if and only if these vectors are
spectral vectors for A and Z respectively, and satisfy

αk 6= ζl, k + l ≤ m.

The reversed identity R transforms the first companion matrix Ca, defined
in (2.4), to the third companion matrix

Ĉa = R−1CaR =




−am−1 −am−2 · · · −a1 −a0

1 0

1
. . .
. . . 0

1 0




.

We state Theorem 3.2 from [15], that deals with pairs of matrices consisting
of a first companion matrix and a third companion matrix.

Theorem 2.2.3 Let A be a first companion m ×m matrix and Z be a third
companion m×m matrix. Then the pair A, Z admits simultaneous reduction
to complementary triangular forms with diagonal vectors α and ζ as in (2.5),
if and only if these vectors are spectral vectors for A and Z respectively, and
satisfy

αkζl 6= 1, k + l ≤ m.

The following result, Theorem 4.1 from [12], deals with certain pairs of
nilpotent matrices that are called sharply upper triangular matrices. The sym-
bol On denotes the n× n zero matrix.
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Theorem 2.2.4 Let 1 ≤ α, ω ≤ m − 1, and let A12 be an invertible upper
triangular (m−α)× (m−α) matrix and Z12 be an invertible upper triangular
(m− ω)× (m− ω) matrix. Let the m×m matrices A and Z be given by

A =

(
O A12

Oα O

)
, Z =

(
O Z12

Oω O

)
.

Then the pair A, Z admits simultaneous reduction to complementary triangular
forms, if and only if α + ω > m, α does not divide ω, and ω does not divide
α.

We will now discuss pairs of nonderogatory Jordan Matrices. Recall that
a matrix B is called nonderogatory, if each eigenvalue β ∈ σ(B) has geometric
multiplicity dim Ker(B − β) = 1. If α is a complex number, then the n × n
matrix

J(α, n) =




α 1 0 · · · 0

0 α 1
. . .

...
...

. . . . . . . . . 0
...

. . . α 1
0 · · · · · · 0 α




denotes the upper triangular n× n Jordan block with eigenvalue α. A matrix
of the form J(α1, n1)⊕ · · · ⊕ J(αs, ns) is called a Jordan matrix. This Jordan
matrix is nonderogatory if and only if the eigenvalues α1, . . . , αs are mutually
distinct. Consider the nonderogatory Jordan m×m matrices

Jα = J(α1, k1)⊕ · · · ⊕ J(αs, ks), Jζ = J(ζ1, l1)⊕ · · · ⊕ J(ζt, lt), (2.6)

with k1, . . . , ks and l1, . . . , lt non-zero positive integers, such that k1+· · ·+ks =
l1 + · · ·+ lt = m, with α1, . . . , αs the distinct eigenvalues for Jα, and ζ1, . . . , ζt

the distinct eigenvalues for Jζ . For 1 ≤ ρ ≤ s and 1 ≤ σ ≤ t, we say that the
Jordan blocks J(αρ, kρ) and J(ζσ, lσ) have a diagonal overlap on more than
one position, if the set



1 +

ρ−1∑

i=1

ki, . . . ,
ρ∑

i=1

ki



 ∩



1 +

σ−1∑

j=1

lj, . . . ,
σ∑

j=1

lj





contains more than one element. We now state Theorem 4.1 in [13].
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Theorem 2.2.5 Let Jα and Jζ be nonderogatory Jordan matrices. Then the
pair Jα, Jζ admits simultaneous reduction to complementary triangular forms,
if and only if Jα and Jζ contain no Jordan blocks, that have an overlap on
more than one diagonal position.

2.3 Spectral Polynomials

In this section, new results on simultaneous reduction to complementary tri-
angular forms are obtained, using the following type of polynomial: Let B be
an m ×m matrix and let the mutually distinct eigenvalues of B be denoted
by β1, . . . , βs. Define the spectral polynomial of B by

pB(λ) = (λ− β1) · · · (λ− βs). (2.7)

This polynomial is the monic polynomial of minimal degree vanishing on the
spectrum of B. Note that the matrix pB(B) is nilpotent and that pB(B) = Om

if and only if B is diagonalizable. In fact, the subspace Ker pB(B) is the linear
span of all eigenvectors of B.

First, we turn to simultaneous reduction to complementary triangular
forms for pairs of nilpotent matrices. The following theorem is a general-
ization of Lemmas 1.1 and 1.2 in [12]. Note that, in this theorem, Z 6= Om

and (2.8) imply A 6= Om.

Theorem 2.3.1 Let A and Z be nilpotent m × m matrices, Z 6= Om, and
assume that

Ker A ⊆ Ker Z + Ran Z (2.8)

and

Ker A ∩ Ran A ⊆ Ran Z. (2.9)

Then the pair A, Z does not admit simultaneous reduction to complementary
triangular forms.

Proof Assume that (2.8) and (2.9) hold and that the pair A, Z admits
simultaneous reduction to complementary triangular forms, i.e., there exists a
basis s1, . . . , sm in Cm, such that (1 ≤ k ≤ m)

Ask ∈ span{s1, . . . , sk−1}, Zsk ∈ span{sk+1, . . . , sm}. (2.10)
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For m = 2, a contradiction is immediate. For m ≥ 3, we obtain a con-
tradiction by induction. Indeed, the following hypothesis will be proved for
n = 1, . . . , m− 1:

(Πn)

{
span{s1, . . . , sn} ⊆ Ker A
Ran Z ⊆ span{sn+2, . . . , sm} .

Step 1 Note first that

(Π1)

{
s1 ∈ Ker A
Ran Z ⊆ span{s3, . . . , sm} .

Indeed, As1 = 0 by (2.10), so it remains to prove Ran Z ⊆ span{s3, . . . , sm}.
Since s1 ∈ Ker A, (2.8) implies that s1 = x + y, x ∈ Ker Z, y ∈ Ran Z. But
then by (2.10), Ran Z ⊆ span{s2, . . . , sm}, so y ∈ span{s2, . . . , sm}. Further,
0 = Zx = Zs1 − Zy and Zs1 = Zy ∈ span{s3, . . . , sm} follows from (2.10).
Again by (2.10), Zsk ∈ span{s3, . . . , sm} for k = 2, . . . ,m and Step 1 is proved.

Step 2 Let n ∈ {1, . . . , m− 2}. Then (Πn) implies (Πn+1).

Assume that (Πn) holds. It then follows Asn+1 ∈ Ran A∩Ker A, since Asn+1 ∈
span{s1, . . . , sn} ⊆ Ker A. For that reason, and by (2.9), Asn+1 ∈ Ran Z. But
Ran Z ⊆ span{sn+2, . . . , sm}, so Asn+1 = 0. Therefore span{s1, . . . , sn+1} ⊆
Ker A. We need to prove that Ran Z ⊆ span{sn+3, . . . , sm}. Fix 1 ≤ j ≤ n+1.
Then sj ∈ Ker A and by (2.8), sj = xj + yj, xj ∈ Ker Z and yj ∈ Ran Z.
We obtain yj ∈ span{sn+2, . . . , sm}. Further, 0 = Zxj = Zsj − Zyj and
for that reason, Zsj = Zyj ∈ span{sn+3, . . . , sm}. It follows that Ran Z ⊆
span{sn+3, . . . , sm} and (Πn+1) is satisfied.

Using Step 1 and Step 2, the statement (Πm−1) follows by induction. But
(Πm−1) implies that Ran Z = (0) or that Z = Om, a contradiction. The
theorem is proved. 2

If p(λ) and q(λ) are polynomials, and A and Z are m×m matrices, then
it is not difficult to see that (A,Z) ∈ C(m) implies (p(A), q(Z)) ∈ C(m). This
argument provides the following corollary to Theorem 2.3.1.

Corollary 2.3.2 Let A and Z be non-diagonalizable m×m matrices. If

Ker pA(A) ⊆ Ker pZ(Z) + Ran pZ(Z)

and

Ker pA(A) ∩ Ran pA(A) ⊆ Ran pZ(Z),

then the pair A, Z does not admit simultaneous reduction to complementary
triangular forms.
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Corollary 2.3.2 gives a necessary condition for simultaneous reduction to com-
plementary triangular forms. Proposition 2.3.3 below provides a sufficient
condition.

Proposition 2.3.3 Let A and Z be m×m matrices. If either

Ker pA(A) + Ker pZ(Z) = Cm (2.11)

or

Ran pA(A) ∩ Ran pZ(Z) = (0), (2.12)

then the pair A, Z admits simultaneous reduction to complementary triangular
forms.

The subspace Ker pA(A)+Ker pZ(Z) in (2.11) is the linear span of the eigenvec-
tors of A and the eigenvectors of Z. Since the eigenvectors of a diagonalizable
matrix span the whole space, it follows that Theorem 2.2.1 is a special case
of Proposition 2.3.3. Before proving Proposition 2.3.3 we first state a lemma,
the proof of which is straightforward and left to the reader.

Lemma 2.3.4 Let A1 and Z1 be m1 ×m1 matrices, A2 and Z2 be m2 ×m2

matrices, A12 an m1×m2 matrix, Z21 an m2×m1 matrix. Define m = m1+m2

and consider the m×m matrices

A =

(
A1 A12

O A2

)
, Z =

(
Z1 O
Z21 Z2

)
.

If both pairs A1, Z1 and A2, Z2 admit simultaneous reduction to complementary
forms, then the pair A, Z has the same property.

Proof of Proposition 2.3.3 We first prove that (2.11) implies that
(A,Z) ∈ C(m). Write dim Ker pA(A) = k and dim Ker pZ(Z) = l. There
exist vectors φ1, . . . , φk and complex numbers α1, . . . , αk such that

Ker pA(A) = span{φ1, . . . , φk}, Aφi = αiφi, i = 1, . . . , k

and there exist vectors ψ1, . . . , ψl and complex numbers ζ1, . . . , ζl such that

Ker pZ(Z) = span{ψ1, . . . , ψl}, Zψj = ζjψj, j = 1, . . . , l.
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Then (2.11) implies that k + l ≥ m and that the vectors φ1, . . . , φk, ψ1, . . . , ψl

span the whole space Cm. From this collection of vectors, a basis in Cm

can be selected: There exist an integer 0 ≤ s ≤ m, a strictly increasing
mapping π : {1, . . . , s} −→ {1, . . . , k} and a strictly increasing mapping ρ :
{1, . . . , m − s} −→ {1, . . . , l}, such that φπ(1), . . . , φπ(s), ψρ(1), . . . , ψρ(m−s) is a
basis in Cm. With respect to this basis, A and Z assume the forms

A =

(
D1 A12

O A22

)
, Z =

(
Z11 O
Z21 D2

)
,

where D1 is an s× s diagonal matrix with diagonal (απ(1), . . . , απ(s))
T and D2

is an (m − s) × (m − s) diagonal matrix with diagonal (ζρ(1), . . . , ζρ(m−s))
T .

By Theorem 2.2.1 and Lemma 2.3.4 it now follows that the pair A, Z admits
simultaneous reduction to complementary triangular forms.

Second, we prove that (2.12) implies (A, Z) ∈ C(m). First note that (2.12)
implies

Ker pA∗(A
∗) + Ker pZ∗(Z

∗) = Cm.

By the argument given in the first part of the proof, it follows that the pair
A∗, Z∗ admits simultaneous reduction to complementary triangular forms. It
easily follows that the pair A, Z has the same property. The proposition is
proved. 2

Corollary 2.3.2 and Proposition 2.3.3 lead to necessary and sufficient con-
ditions for simultaneous reduction to complementary triangular forms on a
special class of matrices; the almost diagonalizable matrices. An m ×m ma-
trix B is called almost diagonalizable, if rank pB(B) = 1. In other words, the
Jordan canonical form of an almost diagonalizable square matrix contains one
Jordan block of size two, and all other blocks are of size one. The following the-
orem specifies Corollary 2.3.2 and Proposition 2.3.3 for almost diagonalizable
matrices.

Theorem 2.3.5 Let A and Z be almost diagonalizable m×m matrices. Then
the following are equivalent:

1. The pair A, Z admits simultaneous reduction to complementary trian-
gular forms.

2. Ker pA(A) 6= Ker pZ(Z) or Ran pA(A) 6= Ran pZ(Z).

3. pA(A) is not a scalar multiple of pZ(Z).
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The equivalence of the second and the third statement is contained in [13],
Theorem 1.4. A somewhat different characterization of simultaneous reduction
to complementary triangular forms for pairs of almost diagonalizable matrices
is presented in Theorem 9 in [14], which extends the main result in [26].

Remark 2.3.6 We now present a full description of simultaneous reduction
to complementary triangular forms for pairs of matrices of order less or equal
to three.

A full description of C(2) is given in [7]: The pair of 2 × 2 matrices A, Z
admits simultaneous reduction to complementary triangular forms if and only
if Ker pA(A) + Ker pZ(Z) = C2.

A full description of C(3) is already given in the final section of [14]. We
now present a somewhat different description below.

Let A and Z be 3× 3 matrices. We may assume without loss of generality,
that rank pA(A) ≤ rank pZ(Z). Note that rank pZ(Z) ≤ 2, since pZ(Z) is a
nilpotent 3× 3 matrix. We distinguish four cases.

1. rank pA(A) = 0,

2. rank pA(A) = rank pZ(Z) = 1,

3. rank pA(A) = 1, rank pZ(Z) = 2,

4. rank pA(A) = rank pZ(Z) = 2.

The results presented in this chapter can be used to tackle these four cases as
follows:

Case 1 In this case, A is diagonalizable by assumption, so Theorem 2.2.1
states that the pair A, Z admits simultaneous reduction to complementary
triangular forms.

Case 2 Both A and Z are almost diagonalizable, and Theorem 2.3.5 can
be applied. Hence the following are equivalent:

1. The pair A, Z admits simultaneous reduction to complementary trian-
gular forms.

2. Ker pA(A) + Ker pZ(Z) = C3 or Ran pA(A) ∩ Ran pZ(Z) = (0).

Case 3 We claim that also in this case, the following are equivalent:
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1. The pair A, Z admits simultaneous reduction to complementary trian-
gular forms.

2. Ker pA(A) + Ker pZ(Z) = C3 or Ran pA(A) ∩ Ran pZ(Z) = (0).

Proposition 2.3.3 provides that the second statement implies the first one. As
for the converse, assume that the invertible 3 × 3 matrix S = ( s1, s2, s3 )
transforms A and Z into complementary triangular forms. Write

S−1pA(A)S =




0 x12 x13

0 0 x23

0 0 0


 , S−1pZ(Z)S =




0 0 0
y21 0 0
y31 y32 0


 .

If s2 6∈ Ker pA(A), then x12 6= 0. Since rank pA(A) = 1, it follows that x23 =
0. Consequently, Ran pA(A) = span{s1}. Since Ran pZ(Z) = span {s2, s3},
we get

Ran pA(A) ∩ Ran pZ(Z) = (0).

On the other hand, if s2 ∈ Ker pA(A), then Ker pA(A) = span{s1, s2}.
Since Ker pZ(Z) = span{s3}, it follows that

Ker pA(A) + Ker pZ(Z) = C3.

Case 4 In this case, both A and Z are similar to a 3× 3 upper triangular
Jordan block. It is not difficult to see that in this case, the following holds
(see also Proposition 3.4 in [13]):

1. The pair A, Z admits simultaneous reduction to complementary trian-
gular forms.

2. Ker pA(A)⊕Ker pZ(Z)2 = C3 and Ker pA(A)2 ⊕Ker pZ(Z) = C3.

Example 2.3.7 This example illustrates, that C(4) cannot be fully described
in terms of the spectral polynomials given by (2.7). Consider the 4×4 matrices

A =




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , B =




1 1 0 0
0 1 0 0
0 0 0 1
0 0 0 0


 , Z =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .
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Then A and Z are transformed into complementary triangular forms by means
of the invertible 4× 4 matrix

S =




1 0 1 0
0 1 0 0
1 0 0 0
0 −1 0 1




as follows:

S−1AS =




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , S−1ZS =




0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


 .

Hence, (A,Z) ∈ C(4). Further, B2(B − I) = Z is a non-diagonalizable 4 × 4
matrix. Therefore, (B, Z) 6∈ C(4). On the other hand,

pA(A) = pB(B) =




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 ,

so any description in terms of pA(A), pB(B) and pZ(Z) only makes no distinc-
tion between the pairs A,Z and B, Z.

2.4 Factorizations into Elementary Factors

Scalar rational matrix functions always admit a complete factorization; see
Section 7 in [7] and Section 1.2 in the introduction of this thesis.

In general, however, rational matrix functions need not admit a complete
factorization. Indeed, for each pair of m×m matrices A, Z, one can construct
a minimal realization

W (λ) = In + C(λIm − A)−1B,

such that Z = A× = A−BC (for details, see Theorem 5.1 in [7]). In particular,
rational matrix functions that do not admit complete factorization can be
constructed from pairs of m × m matrices, that do not admit simultaneous
reduction to complementary triangular forms.
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For this reason, more relaxed notions of factorization into elementary fac-
tors have been considered. In [52], it is shown that each rational matrix
function admits a minimal factorization into nonsquare elementary rational
matrix functions.

In this section, it will be proved that any rational matrix function

W (λ) = In + C(λIm − A)−1B (2.13)

is the product of elementary rational matrix functions, i.e., is of the form

W (λ) = W1(λ) · · ·WN(λ), (2.14)

where W1(λ), . . . , WN(λ) again are elementary rational matrix functions, but
where the number of factors N may exceed the MacMillan degree of W (λ).

Before doing so in Theorem 2.4.1 below, we need to introduce the following.
Let W (λ) be a rational matrix function, with minimal realization (2.13). Let
N ≥ m, and consider two nonnegative integers m1,m3, such that m1 + m +
m3 = N . Define the matrices

Â =




A1 A12 A13

O A A23

O O A33


 , B̂ =




B1

B
O


 , Ĉ =

(
O C C3

)
, (2.15)

where A1 is an m1×m1, A12 an m1×m, A13 an m1×m3, A23 an m×m3, and
A33 an m3 ×m3 matrix. Further, B1 is an m1 × n, and C3 an n×m3 matrix.
A realization

W (λ) = In + Ĉ(λIN − Â)B̂, (2.16)

with Â,B̂ and Ĉ as in (2.15) is called an extended realization of the minimal
realization (2.13). We will allow ourselves to write the matrices of such an
extended realization as

Â =



∗ ∗ ∗
O A ∗
O O ∗


 , B̂ =



∗
B
O


 , Ĉ =

(
O C ∗

)
,

i.e., without specification of m1 and m3, and the corresponding block matrix
entries.

Theorem 2.4.1 Let W (λ) be a rational n× n matrix function with minimal
realization as in (2.13). Then W (λ) admits a factorization as in (2.14), with
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N ≥ m, if and only if there exists an extended realization (2.16) of the minimal
realization (2.13), with the matrices

Â =



∗ ∗ ∗
O A ∗
O O ∗


 , B̂ =



∗
B
O


 , Ĉ =

(
O C ∗

)
,

such that the pair of N ×N matrices Â, Â× = Â − B̂Ĉ admits simultaneous
reduction to complementary triangular forms.

Proof To prove the only if part, assume that W (λ) admits a factorization
as in (2.14). Denote the product realization by

W (λ) = In + C̃(λIN − Ã)−1B̃.

Then Ã is upper triangular, and Ã− B̃C̃ is lower triangular: See the first part
of the proof of Theorem 2.1.2. By Theorem 3.2 in [6], there exists an invertible
N ×N matrix T , such that

T−1ÃT =



∗ ∗ ∗
O F ∗
O O ∗


 , T−1B̃ =



∗
G
O


 , C̃T =

(
O H ∗

)
,

with W (λ) = In + H(λIm − F )−1G a minimal realization. The state space
isomorphism theorem (Theorem 2.1.1) provides an invertible m × m matrix
V , such that V −1FV = A, V −1G = B and HV = C. Define the invertible
N ×N matrix (same block structure as T−1ÃT ) by

W =




I O O
O V O
O O I


 ,

and write S = TW . Then Â = S−1ÃS, B̂ = S−1B̃ and Ĉ = C̃S are of the
form as described in the theorem. The if part is proved in the same fashion as
the if part of Theorem 2.1.2. 2

Let W (λ) be a rational matrix function, and let ρ(W ) denote the infimum
of all integers N , such that W (λ) admits a factorization into N elementary
rational matrix functions. In Theorem 2.4.2 below, it is shown that ρ(W ) <
∞, i.e., that all rational matrix functions admit a factorization into a finite
number of elementary rational matrix functions. The factorization involving
the minimal number ρ = ρ(W ) elementary factors
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W (λ) = W1(λ) · · ·Wρ(λ)

is called a quasicomplete factorization. Obviously, ρ(W ) ≥ δ(W ).
For a square matrix B, we define the spectral polynomial pB(λ) as in (2.7).

Theorem 2.4.2 Consider the minimal realization (2.13), and write A× =
A−BC. Define the integer

k(W ) = m− dim
(
Ker pA(A) + Ker pA×(A×)

)
.

Then ρ(W ) ≤ δ(W ) + k(W ) ≤ 2δ(W )− 1.

Proof The pair of matrices A,B in the minimal realization (2.13) is con-
trollable. Therefore, according to the pole assignment theorem (Theorem 6.5.1
in [31]), there exists for each m-tuple of complex numbers g1, . . . , gm an n×m
matrix K, such that A+BK has eigenvalues g1, . . . , gm. We will assume these
eigenvalues to be distinct, so that A + BK is diagonalizable. We will also
assume that this set of complex numbers does not intersect σ(A) ∪ σ(A×).

Consider the subspace M = Ker pA(A) + Ker pA×(A×). By definition,
codim M = k(W ). Write k = k(W ), and note that 0 ≤ k ≤ m − 1. There
exist k eigenvectors x1, . . . xk for A + BK, such that M ⊕ span{x1, . . . , xk} =
Cm. After renumbering the eigenvalues, we may write (A + BK)xj = gjxj

for j = 1, . . . , k. Define the m × k matrix X = (x1, x2, . . . , xk). Then
(A + BK)X = XG, where G is an k × k diagonal matrix with diagonal
diag(G) = (g1, . . . , gk)

T . Define the n × k matrix F = −KX to obtain
AX −XG = BF . Consider the matrices

Â =

(
A BF
O G

)
, B̂ =

(
B
O

)
, Ĉ =

(
C F

)
.

Further, write

Â× = Â− B̂Ĉ =

(
A× O
O G

)
,

where, as usual, A× = A−BC. Note that

(
Im −X
O Ik

) (
A O
O G

) (
Im X
O Ik

)
=
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(
A AX −XG
O G

)
=

(
A BF
O G

)
= Â.

Since σ(A) ∩ σ(G) = ∅, we get pÂ(λ) = pA(λ)pG(λ). Hence

pÂ(Â) =

(
Im −X
O Ik

) (
pG(A) O

O pA(G)

) (
pA(A) O

O Ok

) (
Im X
O Ik

)
,

where pG(A) and pA(G) are invertible matrices. We have also used pG(G) =
Ok. Therefore,

Ker pÂ(Â) =

(
Im −X
O Ik

)
Ker

(
pA(A) O

O Ok

)
.

Also,

Ker pÂ×(Â×) = Ker

(
pA×(A×) O

O Ok

)
.

It is not difficult to verify, that

Ker pÂ(Â) + Ker pÂ×(Â×) = Cm+k

if and only if

Ker pA(A) + Ker pA×(A×) + Ran X = M + Ran X = Cm.

By construction, the latter is the case. Proposition 2.3.3 then yields that
the pair Â, Â× admits simultaneous reduction to complementary triangular
forms. Next, use Theorem 2.4.1 to obtain that W (λ) admits a factorization
as in (2.14), with N = m + k = δ(W ) + k(W ). The theorem is proved. 2

Consider W (λ) and its realization as in Theorem 2.4.2. Since δ(W ) =
δ(W ∗), and ρ(W ) = ρ(W ∗), we can state a dual version of Theorem 2.4.2.
Indeed,

k∗(W ) = codim
(
Ker pA∗(A

∗) + Ker p(A∗)×((A∗)×)
)

=

dim
(
Ran pA(A) ∩ Ran pA×(A×)

)

leads to ρ(W ) ≤ δ(W ) + k∗(W ) ≤ 2δ(W ) − 1. Conclusively, it follows that
ρ(W ) ≤ δ(W ) + min{k(W ), k∗(W )}.
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To illustrate Theorem 2.4.2 and its proof, we will factorize a given rational
matrix function, that does not admit a complete factorization, into elementary
factors. Such a factorization of this particular rational matrix function was
already known to Thijsse.

Example 2.4.3 In this example, we will compute a quasicomplete factoriza-
tion for the rational matrix function

W (λ) =

(
1 −1

λ2

0 1

)
,

with minimal realization

W (λ) = I2 + C(λI2 − A)−1B,

where the realization matrices are given by

A =

(
0 1
0 0

)
, B =

(
0 0
0 1

)
, C =

(
−1 0
0 0

)
.

Compute

A× = A−BC =

(
0 1
0 0

)
.

Since A = A× is non-diagonalizable, it follows that the pair A, A× does not
admit simultaneous reduction to complementary triangular forms. By Theo-
rem 2.1.2, W (λ) does not admit a complete factorization, so ρ(W ) > 2. We
will now follow the proof of Theorem 2.4.2. Note that with

K =

(
0 0
1 0

)

we have

A + BK =

(
0 1
1 0

)
,

so A + BK is diagonalizable. Note that k(W ) = 1, and take

X =

(
1
1

)
, G = 1, F =

(
0
−1

)
,

so that AX −XG = BF . We now obtain the extended matrices
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Â =




0 1 0
0 0 −1
0 0 1


 , B̂ =




0 0
0 1
0 0


 , Ĉ =

(
−1 0 0
0 0 −1

)
,

and

Â× = Â− B̂Ĉ =




0 1 0
0 0 0
0 0 1


 .

By construction, the pair Â, Â× admits simultaneous reduction to comple-
mentary triangular forms. In fact, the similarity

S =




1 1 0
1 0 0
−1 0 1




transforms Â and Â× into complementary triangular forms as follows:

S−1ÂS =




1 0 −1
0 0 1
0 0 0


 , S−1Â×S =




0 0 0
1 0 0
−1 0 1


 .

In addition,

S−1B̂ =




0 1
0 −1
0 1


 , ĈS =

(
−1 −1 0
1 0 −1

)
.

As explained in the proof of Theorem 2.1.2, we may now calculate the elemen-
tary factors explicitly and obtain W (λ) = W1(λ)W2(λ)W3(λ), with

W1(λ) =

(
1 0
0 1

)
+

1

λ− 1

(
−1
1

) (
0 1

)
=

(
1 −1

λ−1

0 λ
λ−1

)
,

W2(λ) =

(
1 0
0 1

)
+

1

λ

(
−1
0

) (
0 −1

)
=

(
1 1

λ

0 1

)
,

W3(λ) =

(
1 0
0 1

)
+

1

λ− 1

(
0
−1

) (
0 1

)
=

(
1 0
0 λ−1

λ

)
.

We may conclude that ρ(W ) = 3.
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The following example concerns a particular type of extended realizations.

Example 2.4.4 Consider the 4× 4 matrices

A1 =




0 1 0 0
0 0 0 0
1 0 0 0
0 1 0 0


 , Z1 =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

In Example 3.2.1, it will be shown that the pair A1, Z1 does not admit simul-
taneous reduction to complementary triangular forms. The matrices

B1 =




0 0 0
1 0 0
0 1 0
0 0 1


 , C1 =




0 0 −1 0
1 0 0 −1
0 1 0 0


 .

satisfy A1 − Z1 = B1C1. Further, the pair A1, B1 is controllable, and the pair
C1, A1 is observable, so the realization

W (λ) = I3 + C1(λI4 − A1)
−1B1 (2.17)

is minimal. By Theorem 2.1.2, the rational matrix function W (λ) does not
admit a complete factorization. On the other hand, Example 3.2.1 shows that
the pair of 5 × 5 matrices A = A1 ⊕ 0, Z = Z1 ⊕ 0 admits simultaneous
reduction to complementary triangular forms. Define the matrices

B =




0 0 0
1 0 0
0 1 0
0 0 1
0 0 0




, C =




0 0 −1 0 0
1 0 0 −1 0
0 1 0 0 0


 ,

which are obtained form B1 and C1 respectively by adding zero entries at the
appropriate places, such that

W (λ) = I3 + C(λI5 − A)−1B

is an extended realization of (2.17), and such that A − BC = Z. The 5 × 5
invertible matrix

S =




0 0 1 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
−1 0 1 0 0




.



2.4. FACTORIZATIONS INTO ELEMENTARY FACTORS 37

puts A and Z into complementary triangular forms. Therefore, we obtain a
factorization into elementary factors

W (λ) = W1(λ) · · ·W5(λ),

where

W (λ) =




1− 1
λ3 − 1

λ
0

0 1 − 1
λ

1
λ

0 1


 ,

and

W1(λ) =




1 0 0
0 1 − 1

λ

0 0 1


 ,W2(λ) =




1 − 1
λ

0
0 1 0
0 0 1


 ,

W3(λ) =




1 0 0
0 1 1

λ

0 0 1


 ,W4(λ) =




1 0 0
0 1 0
1
λ

0 1


 ,

W5(λ) =




1 0 0
0 1 − 1

λ

0 0 1


 .

We conclude that δ(W ) = 4 and ρ(W ) = 5.

As in Example 2.4.4, consider for a minimal realization (2.13) an extended
realization (2.16) with matrices

Â =




O O O
O A O
O O O


 , B̂ =




O
B
O


 , Ĉ =

(
O C O

)
,

where all extension blocks consist of zero entries. Write m2 = N−m. Without
violating the generality, we may assume that Â = A⊕Om2 and Â× = A×⊕Om2 .
Consider the set

{m + m2 | m2 ∈ Z+
0 , (A⊕Om2 , A

× ⊕Om2) ∈ C(m + m2)},

and denote its infimum by ρ0(A,A×). As usual, the infimum over the empty
set is defined inf ∅ = +∞. First of all, note that ρ0(A,A×) = m if and only if
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W (λ) admits a complete factorization. Further, note that ρ(W ) ≤ ρ0(A,A×).
The infimum ρ0(A,A×) will be studied in more detail in Chapter 3.

Let W (λ) be an n × n rational matrix function, and let ν(W ) denote the
maximal number of non-trivial factors that can occur in a minimal factoriza-
tion of W (λ). Then 1 ≤ ν(W ) ≤ δ(W ). Write ν(W ) = ν, and consider the
minimal factorization

W (λ) = W1(λ) · · ·Wν(λ).

By Theorem 2.4.2, applied on all factors separately, we get

ρ(W ) ≤
ν∑

j=1

ρ(Wj) ≤
ν∑

j=1

[δ(Wj) + k(Wj)] ≤

ν∑

j=1

[2δ(Wj)− 1] = 2δ(W )− ν(W ),

so ρ(W ) + ν(W ) ≤ 2δ(W ). This inequality is not sharp. Indeed, the rational
matrix function

W (λ) = I3 + C(λI3 − A)−1B,

with

A =




0 1 0
0 0 1
0 0 0


 , B =




0 1 −1
0 0 1
1 0 0


 , C =




0 0 0
−1 1 0
−1 0 1


 ,

satisfies δ(W ) = 3, ρ(W ) = 4, and ν(W ) = 1.

A companion based rational matrix function is a rational matrix function,
that admits a minimal realization (2.13), with A and A× first companion ma-
trices. Complementary triangular forms for a pair of first companion matrices
is now well understood; see Theorem 2.2.2. This result states that a pair of
first companion matrices admits simultaneous reduction to complementary tri-
angular forms if and only if a combinatorial condition is met. In this manner,
complete factorization for companion based rational matrix functions is char-
acterized. Surprisingly enough, an important job scheduling problem, known
as the Two Machine Flow Shop Problem, can be rewritten in terms of the
combinatorial condition mentioned above. It turns out that there exists a
feasible schedule for an instance of the Two Machine Flow shop Problem if
and only if the associated companion based rational matrix function admits a
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complete factorization. Moreover, the minimal infeasibility of the instance of
the Two Machine Flow Shop Problem is measured by the nonnegative integer
δ(W )−ν(W ), which equals zero if there exists a feasible schedule. For details,
see [9], [10] and [11].

The question of whether quasicomplete factorization for companion based
rational matrix functions has a meaningful interpretation in job scheduling
requires further research.



40 CHAPTER 2. QUASICOMPLETE FACTORIZATIONS



Chapter 3

Extensions with Zeroes

Let m1 be a positive integer. A pair of m1 × m1 matrices A1, Z1 admits
simultaneous reduction to complementary triangular forms after extension with
zeroes, if there exists a nonnegative integer m2, such that the pair of matrices
A = A1⊕Om2 , Z = Z1⊕Om2 admits simultaneous reduction to complementary
triangular forms.

Simultaneous reduction to complementary triangular forms after extensions
with zeroes is the main subject of this chapter. First of all, we remark that
if the pair of m1 × m1 matrices A1, Z1 admits simultaneous reduction to
complementary triangular forms, then so does the pair A1 ⊕ Om2 , Z1 ⊕ Om2 .
Indeed, if S1 is an invertible m1 × m1 matrix that reduces the pair A1, Z1

to complementary triangular forms, then the invertible matrix S = S1 ⊕ Im2

reduces the pair A = A1 ⊕ Om2 , Z = Z1 ⊕ Om2 to complementary triangular
forms.

Recall that C(m) denotes the collection of all pairs of m × m matrices
that admit simultaneous reduction to complementary triangular forms. We
have just shown that if m2 and m3 are nonnegative integers, with m2 ≤ m3,
then (A1⊕Om2 , Z1⊕Om2) ∈ C(m1 +m2) implies that (A1⊕Om3 , Z1⊕Om3) ∈
C(m1+m3). Therefore, it is appropriate to consider for a given pair of m1×m1

matrices A1, Z1 the infimum

ρ0(A1, Z1) = inf{m1 + m2 | m2 ∈ Z+
0 , (A1 ⊕Om2 , Z1 ⊕Om2) ∈ C(m1 + m2)},

where the infimum over the empty set is defined as inf ∅ = +∞.
It will turn out that the study of this infimum is difficult. This is due to the

fact that the notion of simultaneous reduction to complementary triangular
forms is not completely understood. Only partial results have been obtained
in this direction (see Sections 2.2 and 2.3).

41
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In this chapter, the infimum ρ0(A1, Z1) is studied for pairs of m1 × m1

matrices A1, Z1.
In Section 3.2, an example is given of a pair of 4 × 4 matrices A1, Z1, for

which the infimum ρ0(A1, Z1) = 5, i.e., for which m1 < ρ0(A1, Z1) < ∞. In
other words, this pair satisfies (A1, Z1) 6∈ C(4), while (A1 ⊕ 0, Z1 ⊕ 0) ∈ C(5).

In Section 3.3 up to and including Section 3.8, pairs of m1 ×m1 matrices
A1, Z1 are discussed, for which ρ0(A1, Z1) = m1 or ρ0(A1, Z1) = ∞. Note
that for a pair of m1 × m1 matrices A1, Z1, the infimum ρ0(A1, Z1) = m1 if
and only if (A1, Z1) ∈ C(m1), and that ρ0(A1, Z1) = ∞ if and only if for any
nonnegative integer m2, one gets (A1 ⊕Om2 , Z1 ⊕Om2) 6∈ C(m1 + m2).

In order to prove that the infimum ρ0(A1, Z1) is either m1 or infinity for
certain pairs of m1 ×m1 matrices A1, Z1, it is enough to prove that for any
nonnegative integer m2, (A1⊕Om2 , Z1⊕Om2) ∈ C(m1+m2) implies (A1, Z1) ∈
C(m1). Section 3.3 up to and including Section 3.8 contain this type of results.

In Chapter 5, the infimum ρ0(A1, Z1) appears in the study of complemen-
tary triangular forms for pairs of finite rank operators acting on an infinite
dimensional Banach space. Corollary 5.3.3 proves the following for a pair of
m1 × m1 matrices A1, Z1: If ρ0(A1, Z1) < ∞, then actually ρ0(A1, Z1) ≤
2m1(4m1 − 1).

Section 3.1 discusses preliminaries that are used in this chapter.

3.1 Nests of Invariant Subspaces

In this preliminary section, a geometric description is given of triangular forms
for matrices.

A complex m ×m matrix A can be reduced to upper triangular form by
means of a unitary transformation. This fact is known as Schur’s theorem;
see for example Theorem 5.2.2 in [38] or Theorem 1.9.1 in [31]. Let S be an
invertible (e.g. unitary) m×m matrix, such that S−1AS is an upper triangular
matrix. Write the matrix S in the form

S = ( s1, . . . , sm ) (3.1)

i.e., as a row of m linear independent column vectors s1, . . . , sm. These vectors
define subspaces

Mk = span{s1, . . . , sk}, k = 0, . . . , m, (3.2)

which form the set M = {Mk}m
k=0. The set M is a nest of subspaces, i.e., is a

set of subspaces that is linearly ordered by inclusion. Furthermore, M is not
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properly contained in any other nest of subspaces. Therefore, M is called a
maximal nest of subspaces. As a matter of fact, all maximal nests of subspaces
in Cm are of the form

M = {(0) = M0 ⊂ M1 ⊂ · · · ⊂ Mm = Cm} = {Mk}m
k=0,

where dim Mk = k for k = 0, . . . ,m. Finally, the maximal nest of subspaces as
defined in (3.2) consists of invariant subspaces for A, and is called a maximal
invariant nest of subspaces for A. Schur’s Lemma thus says that each m×m
matrix A has a maximal invariant nest of subspaces.

Conversely, let M = {Mk}m
k=0 be a maximal invariant nest of subspaces for

A. For each k ∈ {1, . . . , m}, there exists a unique complex number αk, such
that

(A− αk)Mk ⊆ Mk−1.

We define the diagonal of A with respect to the maximal invariant nest of
subspaces M as

diag(A;M) = α = (α1, . . . , αm)T .

Each set of vectors s1, . . . , sm that satisfies (3.2) defines an invertible m ×m
matrix S as in (3.1), such that S−1AS is upper triangular, with diag(S−1AS) =
α. Note that in particular, α is a spectral vector for A.

Let σ ⊆ σ(A) be a non-empty subset of the spectrum of the m×m complex
matrix A and define the linear subspace

Nσ(A) = span{Ker(A− α)m | α ∈ σ}.

If σ = {α}, we usually write N{α}(A) = Nα(A). The following lemma states
that an invariant subspace of a matrix admits a decomposition, related to the
spectrum of the matrix.

Lemma 3.1.1 Let A be a complex m×m matrix and assume that the spectrum
of A is the disjoint union of two non-empty subsets σ1 and σ2. Let M be an
invariant subspace for A. Then M admits the decomposition

M = M1 ⊕M2, Mi = M ∩Nσi
(A), i = 1, 2.
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A decomposition as in Lemma 3.1.1 is referred to as a spectral decomposition
of M , associated with σ1 and σ2. For the proof of Lemma 3.1.1, we refer to
Section 2.1 in [31].

We now state and prove two simple lemmas, that are used in the sequel.

Lemma 3.1.2 Let M = {Mk}m
k=0 be a maximal invariant nest for the m×m

matrix A and let N be an n-dimensional invariant subspace for A. Write
Mk,1 = Mk ∩N for k = 0, . . . , m, and denote the restriction of A to N by A1.
Put

τ(i) = min {k | 0 ≤ k ≤ m, dim Mk,1 = i} , i = 0, . . . , n.

Then the nest M1 = {Mτ(i),1}n
i=0 is a maximal invariant nest in N for A1.

Proof Fix k ∈ {0, . . . , m}. Since Mk and N are invariant subspaces for A,
the same is true for Mk,1. If x ∈ Mk,1, then A1x = Ax ∈ Mk,1, i.e., Mk,1 is an
invariant subspace for A1. Further note that M0,1 = (0) and Mm,1 = N . In
addition it is easily verified that dim Mk,1−dim Mk−1,1 ≤ 1. It follows that the
integers τ(0), τ(1), . . . , τ(n) are well-defined, that τ(0) < τ(1) < · · · < τ(n)
and that M1 is a maximal invariant nest in N for A1. 2

Lemma 3.1.3 Let A be an m×m matrix and let M = {Mk}m
k=0 be a maximal

invariant nest for A with diag(A;M) = (α1, . . . , αm)T . Let α ∈ σ(A) and let
N be an n-dimensional invariant subspace of A in Ker(A− α)m. Define

τ(i) = min {k | 1 ≤ k ≤ m, dim(Mk ∩N) = i} , i = 1, . . . , n,

then ατ(i) = α.

Proof Fix i ∈ {1, . . . , n}, and assume that ατ(i) = α̂ 6= α. By definition,
τ(i) ≥ 1, and Mτ(i)−1 ∩ N ⊂ Mτ(i) ∩ N . Further recall that (A − α̂)Mτ(i) ⊆
Mτ(i)−1. Consequently,

(A− α̂)
(
Mτ(i) ∩N

)
⊆ Mτ(i)−1 ∩N ⊂ Mτ(i) ∩N.

On the other hand, the restriction of A− α̂ to the subspace Mτ(i)∩N ⊆ Nα(A)
is invertible. A contradiction is obtained and the lemma is proved. 2

To reformulate the notion of simultaneous reduction to complementary
triangular forms in terms of maximal invariant nests of subspaces, we introduce
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the following terminology. Two maximal nests M = {Mk}m
k=0 and N =

{Nk}m
k=0 in Cm are called matching, if

Mk ⊕Nm−k = Cm, k = 0, . . . , m. (3.3)

A set of projections P = {Pk}m
k=0 is called a maximal nest of projections, if

the sets of subspaces {Ran Pk}m
k=0 and {Ker Pk}m

k=0 are (matching) maximal
nests. For more details on nests of projections, we refer to Chapter 4. The
following simple observation provides alternative descriptions of simultaneous
reduction to complementary triangular forms.

Lemma 3.1.4 Let A and Z be two m × m matrices, then the following are
equivalent.

1. The pair A,Z admits simultaneous reduction to complementary triangu-
lar forms.

2. There exist matching maximal invariant nests M and N for A and Z
respectively.

3. There exists a maximal nest of projections P = {Pk}m
k=0 such that APk =

PkAPk and PkZ = PkZPk for k = 0, . . . , m.

Proof To prove that the first statement implies the second one, let S be
an invertible m ×m matrix as in (3.1), such that S−1AS is upper triangular
and S−1ZS is lower triangular. Then the maximal nests of subspaces M =
{Mk}m

k=0 and N = {Nk}m
k=0, defined by

Mk = span{s1, . . . , sk}, Nm−k = span{sk+1, . . . , sm}, k = 0, . . . , m,

are invariant for A and Z respectively, and are matching. Next, we prove that
the second statement implies the first one. IfM = {Mk}m

k=0 and N = {Nk}m
k=0

are matching maximal nests of subspaces, invariant for A and Z respectively,
then the non-zero vectors s1, . . . , sm, determined up to multiplicative constants
by sk ∈ Mk ∩Nm−k+1, define an invertible m×m matrix S as in (3.1), which
reduces A and Z to complementary triangular forms. Here, we used

dim(Mk ∩Nl) = max {k + l −m, 0} .

The equivalence between the second and third statement is proved as fol-
lows. By definition, two matching maximal nests of subspaces give rise to
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a maximal nest of projections, and vice versa. In addition, APk = PkAPk

is equivalent to A(Ran Pk) ⊆ Ran Pk, and PkZ = PkZPk is equivalent to
Z(Ker Pk) ⊆ Ker Pk. The proof is finished. 2

Let S denote the invertible m × m matrix, obtained from the nests of
subspaces M and N as in the proof of Lemma 3.1.4; note that S is determined
up to multiplication to the right by an invertible diagonal matrix. Assume that

diag(A;M) = (α1, . . . , αm)T = α, diag(Z;N ) = (ζ1, . . . , ζm)T = ζ.

Then

diag(S−1AS) = (α1, . . . , αm)T = α,

but

diag(S−1ZS) = (ζm, . . . , ζ1)
T ,

i.e., the entries of diag(Z;N ) appear in reversed order on the diagonal of the
lower triangular matrix S−1ZS.

Usually, we identify matrices with their action as a linear operator. This
leads to the following convention, which is used several times in this chapter.
Let B1 be an m1 ×m1 matrix and let B2 be an m2 ×m2 matrix, and define
the m ×m matrix B = B1 ⊕ B2. In general, we make the identification that
an n×n matrix acts as a linear operator on Cn. Therefore, B acts on Cm and
with respect to the decomposition Cm = Cm1 ⊕Cm2 it assumes the form

B =

(
B1 O
O B2

)
.

After making the identifications Cm1 = Cm1 ⊕ (0) and Cm2 = (0) ⊕Cm2 , we
get that B1 and B2 denote the restrictions of B to the subspace Cm1 and Cm2

respectively.

3.2 An Example

The following example shows, that there exist pairs of matrices, that do not
admit simultaneous reduction to complementary triangular forms, but obtain
this property after extension with zeroes. Recall that an m × m matrix is
unicellular or uniserial, i.e., has a unique maximal invariant nest of subspaces,
if and only if it is similar to an m×m Jordan block.
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Example 3.2.1 This example (see also Example 2.4.4) provides a pair of
nilpotent 4 × 4 matrices A1, Z1, that does not admit simultaneous reduction
to complementary triangular forms, while the the pair of 5×5 matrices A1⊕0,
Z1 ⊕ 0 does have this property. Indeed, the pair of 4× 4 matrices

A1 =




0 1 0 0
0 0 0 0
1 0 0 0
0 1 0 0


 , Z1 =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




does not admit simultaneous reduction to complementary triangular forms (as
will be shown later), while the pair of 5× 5 matrices A1⊕ 0, Z1⊕ 0 is reduced
to complementary triangular forms by the invertible 5× 5 matrix

S =




0 0 1 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
−1 0 1 0 0




as follows:

S−1(A1 ⊕ 0)S =




0 0 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0




, S−1(Z1 ⊕ 0)S =




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0




.

On the other hand, we will show that (A1, Z1) 6∈ C(4). Indeed, there exist
no matching maximal invariant nests of subspaces for A1 and Z1 respectively.
Note that Z1 is unicellular, and that its unique maximal invariant nest of
subspaces N = {Nk}4

k=0 is given by

N0 = (0),
N1 = span{e1},
N2 = span{e1, e2},
N3 = span{e1, e2, e3},
N4 = C4.

Assume there exists a maximal invariant nest of subspaces M = {Mk}4
k=0 for

A1, that matches N . First of all, M1 ⊆ Ker A1 = span{e3, e4}. Further, to
obtain that M1 ⊕ N3 = C4, we have to take M1 = span{e4 + αe3} for some
complex number α, since e3 ∈ N3. Since A1(M2) ⊆ M1∩Ran A1 = (0), we get
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M2 = Ker A1. Since A1(M3) ⊆ M2 = KerA1, it follows that M3 = Ker A2
1 =

span{e1, e3, e4}. But then M3 ∩N1 = span{e1} 6= (0), and a contradiction has
been obtained. Therefore, (A1, Z1) 6∈ C(4).

3.3 Invertible Matrices

We start with the following simple observation.

Proposition 3.3.1 Let Ai and Zi be mi ×mi matrices (i = 1, 2), and write
m = m1 + m2. Define the m ×m matrices A = A1 ⊕ A2 and Z = Z1 ⊕ Z2.
Assume that σ(A1) ∩ σ(A2) = σ(Z1) ∩ σ(Z2) = ∅. If the pair A,Z admits
simultaneous reduction to complementary triangular forms, then so do the pair
A1, Z1 and the pair A2, Z2.

Proof We write

A =

(
A1 O
O A2

)
, Z =

(
Z1 O
O Z2

)

with respect to the decomposition Cm = Cm1 ⊕Cm2 . Let M = {Mk}m
k=0 and

N = {Nk}m
k=0 be matching maximal invariant nests of subspaces for A and Z

respectively. Since σ(A1) ∩ σ(A2) = ∅, we get

Cmi = span{Ker(A− α)m | α ∈ σ(Ai)}, i = 1, 2,

and since σ(Z1) ∩ σ(Z2) = ∅, we get

Cmi = span{Ker(Z − ζ)m | ζ ∈ σ(Zi)}, i = 1, 2.

We may apply Lemma 3.1.1 to obtain the decompositions

Mk = (Mk ∩Cm1)⊕ (Mk ∩Cm2) ,

Nm−k = (Nm−k ∩Cm1)⊕ (Nm−k ∩Cm2) ,

for k = 0, . . . , m. The matching condition Mk ⊕Nm−k = Cm then gives

(Mk ∩Cmi)⊕ (Nm−k ∩Cmi) = Cmi , (3.4)
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k = 0, . . . , m and i = 1, 2. Fix i ∈ {1, 2} and define the integers

τi(s) = min{k | 0 ≤ k ≤ m, dim (Mk ∩Cmi) = s}, s = 0, . . . , mi.

Lemma 3.1.2 provides that {Mτi(s)}mi
s=0 is a maximal invariant nest for Ai. The

matching condition (3.4) gives that {Nm−τi(s)}mi
s=0 is a maximal invariant nest

for Zi which matches {Mτi(s)}mi
s=0. By Lemma 3.1.4, the pair Ai, Zi admits

simultaneous reduction to complementary triangular forms. 2

For a more elaborate proof of Proposition 3.3.1 in which certain aspects of the
proof are written out in more detail, we refer to [54]. Theorem 3.3.2, which
follows from Proposition 3.3.1, proves that for pairs of invertible matrices A1,
Z1 the infimum ρ0(A1, Z1) ∈ {m1,∞}.

Theorem 3.3.2 Let A1 and Z1 be invertible m1 × m1 matrices, and write
m = m1 + m2. If the pair of m ×m matrices A = A1 ⊕ Om2, Z = Z1 ⊕ Om2

admits simultaneous reduction to complementary triangular forms, then so
does the pair A1, Z1.

3.4 Unicellular and Nilpotent Matrices

Recall that an m × m matrix is unicellular if and only if it is similar to an
m×m Jordan block. The following theorem shows that for pairs of unicellular
matrices A1, Z1 the infimum ρ0(A1, Z1) ∈ {m1,∞}.

Theorem 3.4.1 Let A1 and Z1 be unicellular m1 ×m1 matrices and let m =
m1 +m2. Define the m×m matrices A = A1⊕Om2 and Z = Z1⊕Om2. If the
pair A, Z admits simultaneous reduction to complementary triangular forms
then so does the pair A1, Z1.

Proof The proof of the theorem is divided into three parts, corresponding
to the following cases:

1. The matrices A1 and Z1 are invertible.

2. The matrices A1 and Z1 are singular, therefore nilpotent.

3. The matrix A1 is singular, the matrix Z1 is invertible. By a symmetry
argument, the case A1 invertible and Z1 singular is also covered by this
part.
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Part 1: The matrices A1 and Z1 are invertible.

Apply Theorem 3.3.2.

Part 2: The matrices A1 and Z1 are nilpotent.

Assume there exist maximal invariant nests M = {Mk}m
k=0 and N =

{Nk}m
k=0 for A and Z respectively, that are matching. Write Mk,i = Mk ∩Cmi

and Nk,i = Nk ∩ Cmi for k = 0, . . . , m and i = 1, 2. For s = 0, . . . , m1,
introduce

π(s) = min{k | 0 ≤ k ≤ m, dim Mk,1 = s},

and

ρ(s) = min{l | 0 ≤ l ≤ m, dim Nl,1 = s}.

By Lemma 3.1.2, it follows that {Mπ(s),1}m1
s=0 and {Nρ(s),1}m1

s=0 are maximal
invariant nest for A1 and Z1 respectively. It remains to prove that these nests
are matching.

Since A1 and Z1 are unicellular nilpotent m1 ×m1 matrices, there exists a
basis φ1, . . . , φm1 for Cm1 , such that

A1φ1 = 0, A1φs = φs−1, s = 2, . . . , m1.

There also exists a basis ψ1, . . . , ψm1 in Cm1 , such that

Z1ψ1 = 0, Z1ψs = ψs−1, s = 2, . . . , m1.

We now have

Mπ(s),1 = span{φ1, . . . , φs}, Nρ(s),1 = span{ψ1, . . . , ψs}, s = 0, . . . , m1.

Claim For s = 0, . . . ,m1, the following two identities hold:

Mπ(s) = Mπ(s),1 ⊕Mπ(s),2, Nρ(s) = Nρ(s),1 ⊕Nρ(s),2.

To prove the first identity, fix s ∈ {1, . . . , m1}, the case s = 0 being trivial.
Let x ∈ Mπ(s) and write x = x1 + x2, where xi ∈ Cmi . We need to prove that
x1 ∈ Mπ(s). If x1 = 0 this is trivial, so assume that 0 6= x1 = γ1φ1 + · · ·+γpφp,
where γ1, . . . , γp are complex numbers and p ∈ {1, . . . , m1} such that γp 6= 0.
Then Ax = A1x1 = γ2φ1 + · · ·+ γpφp−1. On the other hand,

AMπ(s) ⊆ Mπ(s−1),1 = span{φ1, . . . , φs−1}.
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Therefore p−1 ≤ s−1, thus p ≤ s and hence x1 ∈ Mπ(s). The second identity
is dealt with similarly, so the claim is proved.

To finish the proof of Part 2, fix s ∈ {0, . . . , m1} and distinguish two cases:

Case 1: π(s) + ρ(m1 − s) ≤ m.

In this case, Mπ(s) ∩Nρ(m1−s) = (0) and hence Mπ(s),1 ⊕Nρ(m1−s),1 ⊆ Cm1 .
A dimension argument shows that equality holds.

Case 2: π(s) + ρ(m1 − s) > m.

In this case, Mπ(s) +Nρ(m1−s) = Cm, and hence Mπ(s),1 +Nρ(m1−s),1 = Cm1 .
A dimension argument shows that Mπ(s),1 ∩Nρ(m1−s),1 = (0).

In both cases, it is proved that

Mπ(s),1 ⊕Nρ(m1−s),1 = Cm1 .

Part 3: The matrix A1 is nilpotent, the matrix Z1 is invertible.

Assume there exist maximal invariant nests M = {Mk}m
k=0 and N =

{Nl}m
l=0 for A and Z respectively, which are matching. Since A1 is nilpo-

tent, one may define -as in Part 2 of the proof- a strictly increasing map-
ping π : {0, . . . , m1} −→ {0, . . . , m} such that dim Mπ(s),1 = s, and Mπ(s) =
Mπ(s),1 ⊕Mπ(s),2. Since Z1 is invertible, it follows by the proof of Proposition
3.3.1, that Nk = Nk,1 ⊕Nk,2 for k = 0, . . . , m. In particular (s = 0, . . . , m1),

Mπ(s) ⊕Nm−π(s) = [Mπ(s),1 ⊕Nm−π(s),1]⊕ [Mπ(s),2 ⊕Nm−π(s),2] = Cm1 ⊕Cm2 .

Consequently, the maximal invariant nests {Mπ(s),1}m1
s=0 and {Nm−π(m1−s),1}m1

s=0

for A1 and Z1 are matching. This finishes the proof of the theorem. 2

Proposition 3.4.2 below is an extension of Theorem 4.1 in [12], which deals
with the case m2 = 0. The latter result, Theorem 2.2.4 in this thesis, concerns
pairs of sharply upper triangular matrices.

Proposition 3.4.2 Let 1 ≤ α, ω ≤ m1− 1, and let A12 be an invertible upper
triangular (m1−α)×(m1−α) matrix and Z12 be an invertible upper triangular
(m1 − ω)× (m1 − ω) matrix. Define the m1 ×m1 matrices

A1 =

(
O A12

Oα O

)
, Z1 =

(
O Z12

Oω O

)
.

Let m2 be any nonnegative integer, m = m1 + m2, and consider the m × m
matrices A = A1 ⊕ Om2 and Z = Z1 ⊕ Om2. Then the pair A, Z admits
simultaneous reduction to complementary triangular forms, if and only if α +
ω > m1, α does not divide ω, and ω does not divide α.
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Proof By a symmetry argument, we may assume without loss of generality,
that α ≤ ω. First, we prove the only if part. Note that A and Z are non-
zero nilpotent m × m matrices. If α + ω ≤ m1, then (2.8) and (2.9) hold
and Theorem 2.3.1 implies that the pair A, Z does not admit simultaneous
reduction to complementary triangular forms. Second, assume that α = ω.
Then Ker A = Ker Z, and Ran A = Ran Z. Again, Theorem 2.3.1 implies
that the pair A, Z does not admit simultaneous reduction to complementary
triangular forms. The case when ω is a multiple of α is reduced to the case
α = ω, by taking an appropriate power of A.

To prove the if part, note that the if part of Theorem 4.1 in [12] pro-
vides that the pair A1, Z1 admits simultaneous reduction to complementary
triangular forms, and hence does the pair A, Z. 2

Proposition 3.4.2 implies the following theorem on simultaneous reduction to
complementary triangular forms after extension with zeroes for pairs of sharply
upper triangular matrices. Hence for these pairs of m1 ×m1 matrices A1, Z1,
we get ρ0(A1, Z1) ∈ {m1,∞}.

Theorem 3.4.3 Let A1 and Z1 be nilpotent matrices as in Proposition 3.4.2,
and let A = A1⊕Om2 and Z = Z1⊕Om2. If the pair A, Z admits simultaneous
reduction to complementary triangular forms, then so does the pair A1, Z1.

3.5 First Companion Matrices

Theorem 3.5.1 Let A1 and Z1 be first companion m1 × m1 matrices, and
define m = m1 + m2. Consider the m × m matrices A = A1 ⊕ Om2 and
Z = Z1 ⊕ Om2. Assume that the pair A, Z admits simultaneous reduction to
complementary triangular forms with diagonals

(α1, . . . , αm)T , (ζ1, . . . , ζm)T . (3.5)

Then there exist strictly increasing mappings π, ρ : {1, . . . ,m1} → {1, . . . , m},
such that the pair A1, Z1 admits simultaneous reduction to complementary
triangular forms with diagonals

(απ(1), . . . , απ(m1))
T , (ζρ(1), . . . , ζρ(m1))

T . (3.6)
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Theorem 3.5.1 shows that for pairs of first companion m1 ×m1 matrices, the
infimum ρ0(A1, Z1) ∈ {m1,∞}. The transpose of a first companion matrix is
called a second companion matrix, while a third companion matrix is obtained
from a first companion matrix after transformation by means of the reversed
identity (see Section 2.2). Finally, a fourth companion matrix is the transpose
of a third companion matrix. In this manner, it is not difficult to see that
Theorem 3.5.1 carries over to pairs of second, pairs of third and pairs of fourth
companion matrices. Before proving Theorem 3.5.1, we present two lemmas.

Lemma 3.5.2 Let m1 be a positive integer, m2 be a nonnegative integer,
and let m = m1 + m2. Let π, ρ : {1, . . . , m1} −→ {1, . . . , m} and τ, σ :
{1, . . . , m2} −→ {1, . . . , m} be strictly increasing mappings, such that π(s) 6=
τ(i) and ρ(s) 6= σ(i) for all s = 1, . . . , m1 and i = 1, . . . , m2. Then σ ≤ τ
implies that π ≤ ρ.

Proof The mappings π and ρ are completely determined by the mappings
τ and σ respectively. In fact,

π(s) =





s 1 ≤ s ≤ τ(1)− 1
s + 1 τ(1) ≤ s ≤ τ(2)− 2
...

...
s + m2 τ(m2)−m2 + 1 ≤ s ≤ m1

,

i.e., π(s) = s + i, if τ(i) − i + 1 ≤ s ≤ τ(i + 1) − i − 1. For convenience, we
write τ(0) = 0 and τ(m2 + 1) = m + 1. In addition,

ρ(t) =





t 1 ≤ t ≤ σ(1)− 1
t + 1 σ(1) ≤ t ≤ σ(2)− 2
...

...
t + m2 σ(m2)−m2 + 1 ≤ t ≤ m1

,

thus ρ(s) = s + j, if σ(j) − j + 1 ≤ s ≤ σ(j + 1) − j − 1. Again, we write
σ(0) = 0 and σ(m2 + 1) = m + 1.

Fix s ∈ {1, . . . , m1}. To show that π(s) ≤ ρ(s), let i, j ∈ {0, . . . , m2} such
that

τ(i)− i + 1 ≤ s ≤ τ(i + 1)− i− 1, σ(j)− j + 1 ≤ s ≤ σ(j + 1)− j − 1.

We prove i ≤ j: If we assume that i ≥ j + 1, then, using σ ≤ τ in the first
inequality, we get

σ(i)−i+1 ≤ τ(i)−i+1 ≤ s ≤ σ(j+1)−j−1 < σ(j+1)−(j+1)+1 ≤ σ(i)−i+1,

a contradiction. Further, i ≤ j implies that π(s) = s + i ≤ s + j = ρ(s). 2
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Lemma 3.5.3 Let B1 be an m1 × m1 matrix, dim Ker B1 = 1 and B =
B1 ⊕Om2. If M ⊆ N0(B) is an invariant subspace for B and Ker B1 6⊆ BM ,
then M ⊆ Ker B

Proof Let dim N0(B1) = n. Since dim Ker B1 = 1, there exist a basis
y1, . . . , yn in N0(B1), such that B1y1 = 0 and B1yk+1 = yk for k = 1, . . . , n−1.
Let 0 6= x ∈ M , and assume that x 6∈ Ker B. Then there exists p ∈ {2, . . . , n}
and complex numbers ξ1, . . . , ξp, with ξp 6= 0, and u ∈ Cm2 , such that x =
ξ1y1 + · · · + ξpyp + u. Then Bp−1x = ξpy1 ∈ BM , which contradicts the
assumption span{y1} = Ker B1 6⊆ BM . 2

Proof of Theorem 3.5.1 We will actually prove a slight generalization of
the result as stated in the theorem. In the proof we shall consider, for a given
complex number γ, the m ×m matrices A = A1 ⊕ γIm2 and Z = Z1 ⊕ γIm2 .
The theorem corresponds to the case when γ = 0. The proof consists of three
parts, dealing with the following cases:

1. γ 6∈ σ(A1) ∪ σ(Z1).

2. γ 6∈ σ(A1), γ ∈ σ(Z1). By a symmetry argument, the case γ ∈ σ(A1),
γ 6∈ σ(Z1) is also covered here.

3. γ ∈ σ(A1) ∩ σ(Z1).

Part 1: γ 6∈ σ(A1) ∪ σ(Z1).

Apply Proposition 3.3.1.

Part 2: γ 6∈ σ(A1), γ ∈ σ(Z1).

Assume that the pair A, Z admits simultaneous reduction to complemen-
tary triangular forms, by means of an m ×m similarity S, with diagonals α
and ζ as in (3.5). Let the maximal invariant nests (defined by S) for A and Z
be M = {Mk}m

k=0 and N = {Nl}m
l=0, respectively.

We have to prove that the pair A1, Z1 admits simultaneous reduction to
complementary triangular forms with diagonals as in (3.6). By Theorem 2.2.2,
it suffices to find strictly increasing mappings π, ρ : {1, . . . , m1} −→ {1, . . . , m}
such that the vectors in (3.6) are spectral vectors for A1 and Z1, and such that

απ(s) 6= ζρ(t), s + t ≤ m1. (3.7)

To define π and ρ, we will analyse the diagonals α and ζ. More specifically, we
will determine restrictions on the positions of the eigenvalues on the diagonals.
The first claim below concerns the eigenvalues different from γ.
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Claim 1 If αk = ζl 6= γ, then k + l > m.

To prove the claim, assume that αk = ζl = β 6= γ. Then β ∈ σ(A1)∩σ(Z1)
and

Ker(β − A1) = Ker(β − Z1) = span{x1(β)},

since A1 and Z1 are first companion matrices. Because β 6= γ, it holds that

Ker(β−A) = Ker(β−Z) = span
(

1, β, · · · , βm1−1, 0, · · · , 0
)T

= L ⊆ Cm.

On the other hand, L ⊆ Mk, since β = αk, and L ⊆ Nl, since β = ζl. Therefore
(0) 6= L ⊆ Mk ∩Nl, so k + l > m. The claim is proved.

To obtain restrictions on the positions of the eigenvalues equal to γ, the
generalized eigenspaces Nγ(A) and Nγ(Z) are studied. Note that Nγ(A) =
Nγ(A1)⊕Cm2 = Cm2 , and Nγ(Z) = Nγ(Z1)⊕Cm2 ; so in particular, Nγ(A) ⊆
Nγ(Z). Note that dim Nγ(Z1) = q is a strictly positive integer and that
dim Nγ(Z) = q + m2. Define

τ(i) = min {k | 1 ≤ k ≤ m, dim (Mk ∩Nγ(A)) = i} , i = 1, . . . , m2,

σ(j) = min {l | 1 ≤ l ≤ m, dim (Nl ∩Nγ(Z)) = j} , j = 1, . . . , q + m2.

Claim 2 It is immediate from Lemma 3.1.3 that

ατ(i) = γ, i = 1, . . . , m2,

and

ζσ(j) = γ, j = 1, . . . , q + m2. (3.8)

Claim 3 If i + j > q + m2, then τ(i) + σ(j) > m.

To prove the claim, assume that τ(i) + σ(j) ≤ m. Then Mτ(i) ∩ Nσ(j) = (0),
and hence

(
Mτ(i) ∩Nγ(A)

)
⊕

(
Nσ(j) ∩Nγ(Z)

)
⊆ Nγ(A) + Nγ(Z) = Nγ(Z).

A dimension argument shows that i + j ≤ q + m2 and the claim is proved.
As a consequence of Claim 3, the following inequalities hold:

τ(i) + σ(q + m2 − i + 1) > m, i = 1, . . . ,m2. (3.9)
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It will be convenient to use the following notation:

ζ̂l = ζm−l+1, l = 1, . . . , m, (3.10)

and

σ̂(j) = m− σ(q + m2 − j + 1) + 1, j = 1, . . . , q + m2. (3.11)

The expressions (3.8) and (3.9) are rewritten according to (3.10) and (3.11) as
follows:

ζ̂σ̂(j) = γ, j = 1, . . . , q + m2, (3.12)

and

σ̂(i) ≤ τ(i), i = 1, . . . , m2. (3.13)

Define the strictly increasing mappings π, ρ̂ : {1, . . . , m1} −→ {1, . . . , m},
such that π(s) 6= τ(i) and ρ̂(s) 6= σ̂(i) for all s = 1, . . . , m1 and i = 1, . . . , m2.
By Lemma 3.5.2, inequality (3.13) implies that π ≤ ρ̂. Define the strictly
increasing mapping ρ : {1, . . . , m1} −→ {1, . . . , m} by

ρ(t) = m− ρ̂(m1 − t + 1) + 1, t = 1, . . . , m1.

This equation and π ≤ ρ̂ together imply that

π(s) + ρ(m1 − s + 1) ≤ m + 1, s = 1, . . . , m1. (3.14)

Note that the vectors in (3.6) are indeed spectral vectors for A1 and Z1,
as they are obtained from the spectral vectors for A and Z by omitting m2

eigenvalues γ. (Consider Claim 2 and the definition of π and ρ.) To prove that
the spectral vectors in (3.6) satisfy the ordering condition (3.7), assume that
απ(s) = ζρ(t) = β. Then β 6= γ, since γ 6∈ σ(A1). It follows from Claim 1 that
π(s)+ρ(t) > m. Then (3.14) implies that ρ(m1−s+1) ≤ m+1−π(s) ≤ ρ(t),
so m1−s+1 ≤ t (ρ is strictly increasing) or s+ t > m1. Part 2 of the theorem
is proved.

Part 3: γ ∈ σ(A1) ∩ σ(Z1).

Assume that the pair A, Z admits simultaneous reduction to complemen-
tary triangular with diagonals α and ζ as in (3.5). Notation will be consistent
with Part 2 of the proof, unless explicitly stated otherwise.
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As in Part 2, the main course of the proof of Part 3 will be as follows:
Restrictions on the diagonals α and ζ, based on the matching condition on the
maximal invariant nests M and N for A and Z respectively, are used to define
strictly increasing mappings π, ρ : {1, . . . , m1} −→ {1, . . . , m}, such that the
vectors (3.6) are spectral vectors for A1 and Z1, and such that condition (3.7)
is satisfied.

First of all, Claim 1 in Part 2 of the proof remains valid. The restrictions
on the positions of the eigenvalues equal to γ on the diagonals α and ζ need
more attention. Note that both p = dim Nγ(A1) and q = dim Nγ(Z1) are
strictly positive integers and dim Nγ(A) = p + m2, dim Nγ(Z) = q + m2. By
symmetry, we may assume without loss of generality that p ≤ q. Since A1 and
Z1 are first companion matrices, it follows that Nγ(A) ⊆ Nγ(Z).

Define

τ(i) = min {k | 1 ≤ k ≤ m, dim (Mk ∩Nγ(A)) = i} , i = 1, . . . , p + m2,

σ(j) = min {l | 1 ≤ l ≤ m, dim (Nl ∩Nγ(Z)) = j} , j = 1, . . . , q + m2.

Claim 4 The following is an immediate consequence of Lemma 3.1.3.

ατ(i) = γ, i = 1, . . . , p + m2,

and

ζσ(j) = γ, j = 1, . . . , q + m2.

Since A1 and Z1 are first companion matrices, L = Ker(γ−A1) = Ker(γ−
Z1) = span{x1(γ)}. Define the integers

τ∗ = min {k | 1 ≤ k ≤ m,L ⊆ Mk}
and

σ∗ = min {l | 1 ≤ l ≤ m}, L ⊆ Nl} .

There exist i∗ ∈ {1, . . . , p + m2}, such that τ∗ = τ(i∗). Indeed, by definition
of τ∗, we get x1(γ) 6∈ Mτ∗−1 and x1(γ) ∈ Mτ∗ . Therefore, Mτ∗ = Mτ∗−1 ⊕
span{x1(γ)}. It follows that (A − γ)Mτ∗ ⊆ Mτ∗−1, so ατ∗ = γ. This gives
τ∗ ∈ {τ(1), . . . , τ(p + m2)}.

Similarly, it is shown that there exists j∗ ∈ {1, . . . , q + m2}, such that
σ∗ = σ(j∗).
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Apply Lemma 3.5.3 to B1 = A1 − γ, B = A− γ, M = Mτ(i∗) ∩Nγ(A), and to
B1 = Z1 − γ, B = Z − γ, M = Nσ(j∗) ∩Nγ(Z), to obtain

Mτ(i∗) ∩Nγ(A), Nσ(j∗) ∩Nγ(Z) ⊆ L⊕Cm2 , (3.15)

and by a dimension argument, i∗, j∗ ≤ m2 +1. In addition, L ⊆ Mτ(i∗)∩Nσ(j∗)
implies that

τ(i∗) + σ(j∗) > m. (3.16)

Claim 5 If j ≤ j∗ and i + j > p + m2, then

τ(i) + σ(j) > m.

The claim is proved as follows: Assume that j ≤ j∗, then

Nσ(j) ∩Nγ(Z) ⊆ Nσ(j∗) ∩Nγ(Z) ⊆ L⊕Cm2 ⊆ Nγ(A).

If in addition, τ(i) + σ(j) ≤ m, it follows that

(
Mτ(i) ∩Nγ(A)

)
⊕

(
Nσ(j) ∩Nγ(Z)

)
⊆ Nγ(A),

and a dimension argument provides i + j ≤ p + m2. The claim is proved.

In particular, Claim 5 implies that

τ(p + m2 − j + 1) + σ(j) > m, j = 1, . . . , j∗. (3.17)

Claim 6 If i ≤ i∗, j ≤ j∗ and i + j > m2 + 1, then

τ(i) + σ(j) > m.

To prove the claim, let i ≤ i∗ and j ≤ j∗. If we assume that τ(i) + σ(j) ≤ m,
then

(
Mτ(i) ∩Nγ(A)

)
⊕

(
Nσ(j) ∩Nγ(Z)

)
⊆

(
Mτ(i∗) ∩Nγ(A)

)
+

(
Nσ(j∗) ∩Nγ(Z)

)
⊆ L⊕Cm2 ,

and a dimension argument provides i + j ≤ m2 + 1. The claim is proved.

Claim 7 There exists a pair κ,λ such that
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κ ∈ {0, . . . , i∗ − 1}, λ ∈ {0, . . . , j∗ − 1}, (3.18)

κ + λ ≤ m2, (3.19)

τ(κ + 1) + σ(λ + 1) > m. (3.20)

To prove the claim, we consider two cases.

Case 1 i∗ + j∗ ≤ m2 + 2

In this case, put κ = i∗ − 1 and λ = j∗ − 1. Then it is immediate that (3.18)
and (3.19) are satisfied. Further (3.16) implies (3.20).

Case 2 i∗ + j∗ > m2 + 2

Define the integer d = i∗ + j∗ −m2 > 2. In this case, define κ = i∗ − 1 and
λ = j∗ − d + 1. Then it is easily verified that (3.18) and (3.19) are satisfied.
Since (κ + 1) + (λ + 1) = m2 + 2, Claim 6 implies (3.20). The claim is proved.

In the proof of Claim 7, the integers κ and λ were defined as follows (put
d = max{i∗ + j∗ −m2, 2})

κ = i∗ − 1, λ = j∗ − d + 1.

In general, there may exist other pairs of integers κ, λ, which also satisfy the
conditions of Claim 7. For the proof, it suffices to consider only this pair of
integers.

Note that Claim 3 in Part 2 remains valid, and that we also obtain (3.9).
As in Part 2, the notation introduced by the equations (3.10) and (3.11) is
used to rewrite (3.8) and (3.9) as (3.12) and (3.13).

Further, equation (3.17) can be rewritten as

σ̂(q + m2 − j + 1) ≤ τ(p + m2 − j + 1), j = 1, . . . , j∗, (3.21)

and (3.20) as

σ̂(q + m2 − λ) ≤ τ(κ + 1). (3.22)

Define the strictly increasing mappings τ̃ , σ̃ : {1, . . . , m2} −→ {1, . . . ,m} as
follows:
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τ̃(i) =

{
τ(i) i = 1, . . . , m2 − λ
τ(p + i) i = m2 − λ + 1, . . . , m2

, (3.23)

and

σ̃(j) =

{
σ̂(j) j = 1, . . . , κ
σ̂(q + j) j = κ + 1, . . . , m2

. (3.24)

Note that the p integers

τ(m2 − λ + 1), . . . , τ(p + m2 − λ) (3.25)

are not in the range of τ̃ , and that the q integers

σ̂(κ + 1), . . . , σ̂(q + κ) (3.26)

are not in the range of σ̃.

Claim 8 σ̃ ≤ τ̃

First, let 1 ≤ i ≤ κ. Since κ ≤ i∗ − 1 ≤ m2, (3.13) implies that σ̃(i) =
σ̂(i) ≤ τ(i) = τ̃(i).

Second, let κ + 1 ≤ i ≤ m2 − λ. Then (3.22) implies σ̃(i) = σ̂(q + i) ≤
σ̂(q + m2 − λ) ≤ τ(κ + 1) ≤ τ(i) = τ̃(i).

Finally, let m2 − λ + 1 ≤ i ≤ m2. Then (3.21) implies σ̃(i) = σ̂(q + i) ≤
τ(p + i) = τ̃(i), and the claim is proved.

Define the strictly increasing mappings π, ρ̃ : {1, . . . , m1} −→ {1, . . . , m},
such that π(s) 6= τ̃(i) and ρ̃(s) 6= σ̃(i) for all s = 1, . . . , m1 and i = 1, . . . , m2.
By Lemma 3.5.2, the inequality in Claim 8 implies that π ≤ ρ̃. Define the
strictly increasing mapping ρ : {1, . . . , m1} −→ {1, . . . , m} by

ρ(t) = m− ρ̃(m1 − t + 1) + 1, t = 1, . . . , m1.

This equation and π ≤ ρ̃ imply (3.14).

The vectors in (3.6) are spectral vectors for A1 and Z1 respectively, for the
same reason as described in Part 2 of the proof. The integers in (3.25) are in
the range of π. They indicate the positions of the eigenvalue γ in the spectral
vector of A1 given in (3.6) as follows: If π(s) is one of the integers (3.25), then
απ(s) = γ. The integers (3.26) are in the range of ρ̃. For that reason, the q
integers

σ(m2 − κ + 1), . . . , σ(q + m2 − κ) (3.27)
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are in the range of ρ and indicate the positions of the eigenvalues equal to γ
in the spectral vector of Z1 in (3.6).

We need to prove that condition (3.7) is satisfied for the spectral vectors
of A1 and Z1, as given in (3.6).

If απ(s) = ζρ(t) 6= γ, then by the same argument as given in Part 2, it follows
that s + t > m2.

If απ(s) = ζρ(t) = γ, since γ ∈ σ(A1) ∩ σ(Z1)), then π(s) is one of the
integers (3.25) and ρ(t) is one of the integers (3.27). Therefore,

π(s) + ρ(t) ≥ τ(m2 − λ + 1) + σ(m2 − κ + 1) ≥ τ(κ + 1) + σ(λ + 1) > m.

Apply (3.14) as in Part 2, to obtain that s + t > m1. This finally finishes the
proof of the theorem. 2

3.6 First and Third Companion Matrices

We now come to pairs of matrices, consisting of a first companion matrix and
a third companion matrix. By taking transposes, the result also deals with
pairs of matrices consisting of a second and a fourth companion matrix. For
these pairs of m1 ×m1 matrices A1, Z1, we get ρ0(A1, Z1) ∈ {m1,∞}.

Theorem 3.6.1 Let A1 be a first companion m1 × m1 matrix, and Z1 be
a third companion m1 × m1 matrix. Define the matrices A = A1 ⊕ Om2

and Z = Z1 ⊕ Om2, and let m = m1 + m2. Assume that the pair A, Z
admits simultaneous reduction to complementary triangular forms with di-
agonals α and ζ as in (3.5). Then there exist strictly increasing mappings
π, ρ : {1, . . . ,m1} −→ {1, . . . ,m}, such that the pair A1, Z1 admits simultane-
ous reduction to complementary triangular forms with diagonals as in (3.6).

Before we prove Theorem 3.6.1, the following technical lemma is proved.

Lemma 3.6.2 Let A1 and Z1 be m1×m1 matrices, a, z be complex numbers,
and define the matrices A = A1⊕aIm2 and Z = Z1⊕ zIm2. Let m = m1 +m2.
Assume that the pair A, Z admits simultaneous reduction to complementary
triangular forms with diagonals α and ζ as in (3.5). Then there exist strictly
increasing mappings γ, δ : {1, . . . , m2} −→ {1, . . . , m}, such that

αγ(i) = a, ζδ(i) = z, i = 1, . . . , m2, (3.28)
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and

γ(i) + δ(m2 − i + 1) > m, i = 1, . . . ,m2. (3.29)

Proof LetM = {Mk}m
k=0 andN = {Nl}m

l=0 be matching maximal invariant
nests for A and Z respectively, and α = diag(A;M) and ζ = diag(Z;N ).
Define

γ(i) = min {k | 1 ≤ k ≤ m, dim (Mk ∩Cm2) = i} , i = 1, . . . , m2

and

δ(j) = min {l | 1 ≤ l ≤ m, dim (Nl ∩Cm2) = j} , j = 1, . . . , m2.

Then by Lemma 3.1.3, (3.28) follows. To prove (3.29), fix i ∈ {1, . . . ,m2}. It
holds that

dim
(
Mγ(i) ∩Nδ(m2−i+1) ∩Cm2

)
≥

dim
(
Mγ(i) ∩Cm2

)
+ dim

(
Nδ(m2−i+1) ∩Cm2

)
−m2 = 1,

which implies that γ(i) + δ(m2 − i + 1) > m. The lemma is proved. 2

Proof of Theorem 3.6.1 Assume that the pair A, Z admits simultaneous
reduction to complementary triangular forms with diagonals α and ζ as in
(3.5). Denote the matching maximal invariant nests for A and Z respectively
by M = {Mk}m

k=0 and N = {Nl}m
l=0. As in the proof of Theorem 3.5.1, the

matching of the nests M and N forces conditions on the diagonals α and ζ.
Accordingly, mappings π, ρ : {1, . . . , m1} −→ {1, . . . , m} will be defined such
that the condition

απ(s)ζρ(t) 6= 1, s + t ≤ m1 (3.30)

is satisfied. Theorem 2.2.3 then yields the result. We now proceed with the
proof.

Claim If αkζl = 1, then k + l > m.

The claim is proved as follows: If αkζl = 1, then β = αk 6= 0, and ζl = 1/β.
In particular, β ∈ σ(A1), and 1/β ∈ σ(Z1). Therefore,

Ker(β − A1) = Ker(1/β − Z1) = span{x1(β)},
since A1 is a first companion matrix, and Z1 is a third companion matrix.
Since β 6= 0, we get
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Ker(β − A) = Ker(1/β − Z) = span{(1 β · · · βm1−1 0 · · · 0 )T}.

By Lemma 3.6.2, where we take a = z = 0, there exist strictly increasing
mappings γ, δ : {1, . . . , m2} −→ {1, . . . , m} which satisfy (3.28) and (3.29).

Let δ̂(i) = m− δ(m2− i+1)+1 for i = 1, . . . , m2. By (3.29), we get δ̂ ≤ γ.
Define strictly increasing mappings π, ρ̂ : {1, . . . , m1} −→ {1, . . . , m}, such
that δ̂(i) 6= ρ̂(s) and γ(i) 6= π(s) for i = 1, . . . , m2 and s = 1, . . . , m1. Lemma
3.5.2 implies π ≤ ρ̂. Define ρ(s) = m − ρ̂(m1 − s + 1) + 1 for s = 1, . . . , m1.
Obviously π(s) ≤ m− ρ(m1 − s + 1) + 1, so π(s) + ρ(m1 − s + 1) ≤ m + 1.

Assume that απ(s)ζρ(t) = 1. By the claim, π(s) + ρ(t) > m. We get
π(s) + ρ(t) ≥ m + 1 ≥ π(s) + ρ(m1 − s + 1), so ρ(t) ≥ ρ(m1 − s + 1). Since ρ
is increasing, it follows that t ≥ m1 − s + 1, thus s + t > m1. The theorem is
proved. 2

The Proof of Theorem 3.5.1 is more complicated than the proof of Theorem
3.6.1. This is due to the fact that the zero entries in the spectral vectors (3.5)
do not interfere with the ordering condition (3.30). Indeed, if αζ = 1, then
α 6= 0 and ζ 6= 0.

In the last two sections, we have not dealt with all pairs of companion
matrices. For example, we have not described complementary triangular forms
after extension with zeroes for pair of matrices, consisting of a first and a
second companion matrix. As it seems, results in this direction are very hard
to obtain.

3.7 Almost Diagonalizable Matrices

We first turn to pairs of matrices, where one of the matrices is of rank one. We
may restrict ourselves to non-diagonalizable rank one matrices, since Theorem
2.2.1 deals with pairs of matrices, containing a diagonalizable matrix. Recall
that a rank one matrix is non-diagonalizable if and only if it is nilpotent.

Proposition 3.7.1 Let A and Z be complex m×m matrices, and assume that
Z is a nilpotent rank one operator. Then the pair A, Z admits simultaneous
reduction to complementary triangular forms if and only if there exist non-
trivial subspaces M, N , with

M ⊕N = Cm, AM ⊆ M, Ran Z ⊆ N ⊆ Ker Z. (3.31)
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Proof Assume there exist subspaces M, N , such that (3.31) holds. Then
with respect to M ⊕N = Cm,

A =

(
A1 A12

O A2

)
, Z =

(
O O
Z21 O

)
,

so the pair A,Z admits simultaneous reduction to complementary triangular
forms, by Lemma 2.3.4.

On the other hand, if M = {Mk}m
k=0 and N = {Nl}m

l=0 are matching
maximal invariant nests for A and Z respectively, then define

n = min{k | k = 0, . . . ,m, Ran Z ⊆ Nk}.

Since (0) 6= Ran Z = Z(Nm) ⊆ Nm−1, it follows that 1 ≤ n ≤ m − 1.
Therefore, N = Nn is a non-trivial subspace. Furthermore, since Z is nilpotent
rank one and by the minimality of n, ZN ⊆ Nn−1 ∩ Ran Z = (0). Therefore,
Ran Z ⊆ N ⊆ Ker Z. Take M = Mm−n to complete the proof. 2

Proposition 3.7.2 Let A1 and Z1 be m1 ×m1 matrices, Z1 nilpotent and of
rank one. If the pair A1 ⊕ Om2, Z1 ⊕ Om2 admits simultaneous reduction to
complementary triangular forms, then so does the pair A1, Z1.

Proof A matrix is nilpotent and of rank one, if and only if its extension
with zeroes has this property. Therefore, we may assume that m2 = 1. Write
m = m1 + 1. If the pair A = A1 ⊕ 0, Z = Z1 ⊕ 0 admits simultaneous
reduction to complementary triangular forms, then, by Proposition 3.7.1, there
exist subspaces M, N ⊆ Cm, such that (3.31) is satisfied. Let P denote the
projection onto Cm1 along C1, and write M1 = M ∩Cm1 , N1 = N ∩Cm1 .

Then both M1 and PM are invariant subspaces for A1, both N1 and PN
are invariant subspaces for Z1, and Ran Z1 ⊆ N1 ⊆ Ker Z ∩ Cm1 = Ker Z1.
Also, Ran Z1 ⊆ PN ⊆ PKer Z = Ker Z1. It is now sufficient to prove that
either M1 or PM matches with either N1 or PN , since Proposition 3.7.1 can
then be applied to obtain that the pair A1, Z1 admits simultaneous reduction
to complementary triangular forms.

Since M ⊕N = Cm, it follows that M1 ∩N1 = (0), and that PM + PN =
Cm1 . If either M1 + N1 = Cm1 or PM ∩ PN = (0), we are done. Therefore,
assume that both M1 ⊕N1 6= Cm1 and that PM ∩ PN 6= (0).

Note that PM = (M + C1) ∩ Cm1 , so dim(PM/M1) ≤ 1. In the same
fashion, we get dim(PN/N1) ≤ 1. Consequently,

1 ≤ dim(PM ∩ PN) = dim PM + dim PN − dim(PM + PN) ≤
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dim PM + dim PN −m1 ≤ dim M1 + dim N1 + 2−m1 ≤

m1 − 1 + 2−m1 = 1.

The inequalities turn out to be equalities, and we may conclude that

dim(M1 + N1) = m1 − 1, dim(PM ∩ PN) = 1,

dim(PM/M1) = dim(PN/N1) = 1.

We distinguish two cases, that need not be exclusive, but cover all situations.

Case 1 PM ∩ PN 6⊆ M1

In this case, M1 ∩ PN = (0), and by a dimension argument, M1 ⊕ PN =
Cm1 .

Case 2 PM ∩ PN 6⊆ N1

In this case, PM ∩N1 = (0), and by a dimension argument, PM ⊕N1 =
Cm1 .
The proposition is proved. 2

The following theorem deals with simultaneous reduction to complemen-
tary triangular forms after extension with zeroes for pairs of matrices that
contain an almost diagonalizable matrix. For such pairs of m1 ×m1 matrices
A1, Z1 we also have that ρ0(A1, Z1) ∈ {m1,∞}.

Theorem 3.7.3 Let Z1 be an almost diagonalizable m1 × m1 matrix, and
let A1 be any m1 × m1 matrix. Let m2 be a nonnegative integer, and define
m = m1 +m2. If the the pair of m×m matrices A = A1⊕Om2, Z = Z1⊕Om2

admits simultaneous reduction to complementary triangular forms, then so
does the pair A1, Z1.

Proof It is easy to see that (A,Z) ∈ C(m) implies that (A, pZ1(Z)) ∈ C(m),
where pZ1(λ) is a spectral polynomial, as defined in (2.7). Since Z1 is almost
diagonalizable, the matrix pZ1(Z) = pZ1(Z1) ⊕ Om2 is nilpotent and of rank
one. Proposition 3.7.2 provides that (A1, pZ1(Z1)) ∈ C(m1). By Proposition
3.7.1, there exist M,N ⊆ Cm1 , with M⊕N = Cm1 , and such that with respect
to this decomposition,
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A1 =

(
B1 B12

O B2

)
, pZ1(Z1) =

(
On O
Y21 Om1−n

)
,

where dim M = n. Recall that Ker pZ1(Z1) coincides with the span of all
eigenvectors of Z1. Since pZ1(Z1) is of rank one, the subspace Ran pZ1(Z1) is
the span of one of these eigenvectors. Further,

Ran pZ1(Z1) ⊆ N ⊆ Ker pZ1(Z1),

so there exist m1−n eigenvectors φ1, . . . , φm1−n of Z1, such that Ran pZ1(Z1) =
span{φ1}, and

M ⊕ span{φ1, . . . , φm1−n} = Cm1 .

Write N̂ = span{φ1, . . . , φm1−n}, then with respect to the decomposition M ⊕
N̂ = Cm1 , we get

A1 =

(
B̂1 B̂12

O B̂2

)
, Z1 =

(
Ẑ1 O

Ẑ21 Ẑ2

)
, pZ1(Z1) =

(
Ôn O

Ŷ21 Om1−n

)
.

Since pZ1(Ẑ1) = On, and pZ1(Ẑ2) = Om1−n, it follows that Ẑ1 and Ẑ2 are
diagonalizable. Lemma 2.3.4 now implies that (A1, Z1) ∈ C(m1), and the
theorem is complete. 2

The following Theorem deals with pairs of matrices of low order.

Theorem 3.7.4 Let m1 ≤ 3, and let A1 and Z1 be m1 × m1 matrices. Let
m2 be a nonnegative integer, m = m1 + m2, and define the m ×m matrices
A = A1⊕Om2, Z = Z1⊕Om2. If the pair A, Z admits simultaneous reduction
to complementary triangular forms, then so does the pair A1, Z1.

Proof The case when m1 = 1 is trivial. The case when m1 = 2 follows
from Theorem 2.2.1 and Theorem 3.7.3. Indeed, if the pair of matrices A1, Z1

contains a diagonalizable matrix, then Theorem 2.2.1 provides the result, and
if both A1 and Z1 are non-diagonalizable, then they are almost diagonalizable,
and Theorem 3.7.3 can be used.

The case when m1 = 3 is dealt with as follows: If the pair A1, Z1 contains
a diagonalizable matrix, then apply Theorem 2.2.1. If the pair A1, Z1 contains
an almost diagonalizable matrix, use Theorem 3.7.3. The only case, that has
not been dealt with, is the case when both A1 and Z1 are unicellular. In that
case, apply Theorem 3.4.1. The theorem is proved. 2
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3.8 Jordan Matrices

A strictly upper triangular matrix is an upper triangular matrix with zero
diagonal, i.e., a nilpotent upper triangular matrix. Recall that a nonderogatory
nilpotent matrix is unicellular.

Lemma 3.8.1 Let 2 ≤ µ, ν ≤ m1 be integers, A1 a nonderogatory strictly
upper triangular µ × µ matrix, Z1 a nonderogatory strictly upper triangular
ν × ν matrix. Write m = m1 + m2 and consider the m×m matrices

A =




A1 O O
O Om1−µ O
O O Om2


 , Z =




Om1−ν O O
O Z1 O
O O Om2


 .

Then the pair A, Z admits simultaneous reduction to complementary triangular
forms if and only if µ + ν ≤ m1 + 1.

The case when A (or Z) is a zero matrix, corresponding to the case when
µ = 1 (or ν = 1), is excluded in Lemma 3.8.1.

Proof To prove the only if part, note that µ + ν > m1 + 1 implies that
Ker Z ⊆ Ker A + Ran A, and that Ker Z ∩ Ran Z ⊆ Ran A. By Theorem
2.3.1, the pair A, Z does not admit simultaneous reduction to complementary
triangular forms.

To prove the if part, assume that µ+ν ≤ m1+1. Then Ker A+Ker Z = Cm,
and Proposition 2.3.3 implies that the pair A, Z admits simultaneous reduction
to complementary triangular forms. The lemma is proved. 2

Consider the following special case of Lemma 3.8.1.

Corollary 3.8.2 Let m = m1 + m2 and 2 ≤ µ, ν ≤ m1. The pair of m ×m
matrices




J(0, µ) O O
O Om1−µ O
O O Om2


 ,




Om1−ν O O
O J(0, ν) O
O O Om2


 .

admits simultaneous reduction to complementary triangular forms if and only
if µ + ν ≤ m1 + 1.
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Note that the condition µ + ν ≤ m1 + 1 in Corollary 3.8.2 is equivalent
to the statement, that the Jordan blocks J(0, µ) and J(0, ν) have an overlap
on the diagonal on at most one position. If A is a square matrix, then Inv A
denotes the lattice of invariant subspaces for A. The following two lemmas are
quite straightforward and the proofs are left to the reader.

Lemma 3.8.3 Let A,Â and Z,Ẑ be square matrices, such that Inv A ⊆ Inv Â
and Inv Z ⊆ Inv Ẑ. If the pair A, Z admits simultaneous reduction to com-
plementary triangular forms, then so does the pair Â, Ẑ.

Lemma 3.8.4 Let A and Z be square matrices, and assume that Inv A ⊆
Inv Z. Then the pair A, Z admits simultaneous reduction to complementary
triangular forms if and only if Z is diagonalizable.

The following lemma will be used, together with Lemma 3.8.4, in Proposi-
tion 3.8.6.

Lemma 3.8.5 Let A1 and Z1 be strictly upper triangular m1 ×m1 matrices,
with A1 nonderogatory. Let A = A1⊕Om2 and Z = Z1⊕Om2. Then Inv A ⊆
Inv Z.

Proof Write m = m1 + m2. First of all, there exists an invertible m1×m1

matrix R1, such that R−1
1 A1R1 = J(0,m1). It turns out, by Proposition 2.1

in [8], that R1 is upper triangular. Consequently, if R = R1 ⊕ Im2 , then
R−1AR = J(0,m1) ⊕ Om2 and R−1ZR is strictly upper triangular. For this
reason, we may assume without loss of generality, that A1 = J(0,m1).

Let M ∈ Inv A be a non-trivial subspace. We need to prove that M ∈
Inv Z. Let x ∈ M . If x ∈ Cm2 , then Zx = 0 ∈ M . Assume that x 6∈ Cm2 .
Let e1, . . . , em denote the standard basis in Cm = Cm1 ⊕ Cm2 . Write x =∑s

j=1 ζjej +
∑m

j=m1+1 ζjej, with s ∈ {1, . . . , m1} and ζs 6= 0. If s = 1, then

Zx = 0 ∈ M . If 2 ≤ s ≤ m1, then Akx = (J(0,m1)⊕Om2)
kx =

∑s−k
j=1 ζj+kej ∈

M , for 1 ≤ k ≤ s − 1. Since ζs 6= 0, it follows that span{e1, . . . , es−1} ⊆ M .
Since Z is strictly upper triangular, Zx ∈ span{e1, . . . , es−1} ⊆ M . Therefore,
ZM ⊆ M and the lemma is proved. 2

Proposition 3.8.6 Let A and Z be non-zero strictly upper triangular m1×m1

matrices, with A1 nonderogatory. Let A = A1 ⊕ Om2 and Z = Z1 ⊕ Om2.
Then the pair A, Z does not admit simultaneous reduction to complementary
triangular forms.
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Proof Assume that the pair A, Z admits simultaneous reduction to com-
plementary triangular forms. Also, Lemma 3.8.5 implies that Inv A ⊆ Inv Z.
Therefore, by Lemma 3.8.4, the nilpotent matrix Z is diagonalizable, and
hence equal to the zero matrix. A contradiction has been obtained and the
lemma is proved. 2

The following proposition contains the only if part of a result in [13], The-
orem 2.2.5 in this thesis, which deals with the case m2 = 0.

Proposition 3.8.7 Let Jα and Jζ be nonderogatory m1×m1 Jordan matrices
as in (2.6), and assume that there exist Jordanblocks in Jα and Jζ with a
diagonal overlap on more than one position. Then the pair Jα⊕Om2, Jζ⊕Om2

does not admit simultaneous reduction to complementary triangular forms.

Proof Let 1 ≤ ρ ≤ s and 1 ≤ σ ≤ t, such that the Jordan blocks J(αρ, kρ)
and J(ζσ, lσ) have a diagonal overlap on more than one position. It is imme-
diate that the Jordan blocks with overlap on more than one diagonal position
have size kρ, lσ > 1.

There exists a polynomial p(λ), such that p(J(αi, ki)) = Oki
, if i 6= ρ, and

p(J(αρ, kρ)) = J(0, kρ). Indeed, if a polynomial p(λ) satisfies the interpolation
conditions

p(ν)(αi) = 0, ν = 0, . . . , ki − 1, i 6= ρ,

p(αρ) = 0, p(1)(αρ) = 1, p(ν)(αρ) = 0, ν = 2, . . . , kρ − 1,

it has the desired properties. Similarly, there exists a polynomial q(λ), such
that q(J(ζj, lj)) = Olj , if j 6= σ, and q(J(ζσ, lσ)) = J(0, lσ). Then

p(Jα) = Ok1 ⊕ · · · ⊕Okρ−1 ⊕ J(0, kρ)⊕Okρ+1 ⊕ · · · ⊕Oks ,

q(Jζ) = Ol1 ⊕ · · · ⊕Olσ−1 ⊕ J(0, lσ)⊕Olσ+1 ⊕ · · · ⊕Olt .

We may assume that
∑ρ−1

i=1 ki ≤ ∑σ−1
j=1 lj, by interchanging the roles of Jα and

Jζ , if necessary. Further, J(αρ, kρ) and J(ζσ, lσ) have an overlap on more
than one position implies that

∑ρ
i=1 ki >

∑σ−1
j=1 lj + 1. There are two cases to

distinguish.

Case 1:
∑ρ

i=1 ki ≥ ∑σ
j=1 lj, hence

∑ρ−1
i=1 ki ≤ ∑σ−1

j=1 lj <
∑σ

j=1 lj ≤ ∑ρ
i=1 ki.
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In this case, the Jordan block J(αρ, kρ) covers the Jordan block J(ζσ, lσ).
Let m = m1 + m2 and consider the nonnegative integers

γ1 =
ρ−1∑

i=1

ki, γ2 = m−
ρ∑

i=1

ki,

δ1 =
σ−1∑

j=1

lj − γ1, δ2 = m− γ2 −
σ∑

j=1

lj.

The following picture illustrates the position of the Jordan blocks J(αρ, kρ)
and J(ζσ, lσ) relative to each other. The integer values γ1, γ2, δ1, δ2 and kρ, lσ
determine the measure and position of these Jordan blocks.

γ2

δ2

lσ

δ1

γ1

γ2

kρ

γ1J(αρ, kρ)

J(ζσ, lσ)

It follows that

p(Jα ⊕Om2) = Oγ1 ⊕ J(0, kρ)⊕Oγ2 ,

q(Jζ ⊕Om2) = Oγ1 ⊕ (Oδ1 ⊕ J(0, lσ)⊕Oδ2)⊕Oγ2 .

Define the m×m permutation matrix

Π =




O Iγ1 O
Ikρ O O
O O Iγ2


 ,
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then

Π−1p(Jα ⊕Om2)Π = J(0, kρ)⊕Oγ1+γ2 ,

and

Π−1q(Jζ ⊕Om2)Π = (Oδ1 ⊕ J(0, lσ)⊕Oδ2)⊕Oγ1+γ2 .

We may now apply Proposition 3.8.6 to the matrices A1 = J(0, kρ) and Z1 =
Oδ1 ⊕ J(0, lσ) ⊕ Oδ2 , to obtain that the pair A1 ⊕ Oγ1+γ2 , Z1 ⊕ Oγ1+γ2 does
not admit simultaneous reduction to complementary triangular forms. Since
A1 ⊕ Oγ1+γ2 = Π−1p(Jα ⊕ Om2)Π, and Z1 ⊕ Oγ1+γ2 = Π−1q(Jζ ⊕ Om2)Π, we
obtain that also the pair Jα ⊕ Om2 , Jζ ⊕ Om2 does not admit simultaneous
reduction to complementary triangular forms.

Case 2:
∑ρ

i=1 ki <
∑σ

j=1 lj, hence
∑ρ−1

i=1 ki ≤ ∑σ−1
j=1 lj <

∑ρ
i=1 ki <

∑σ
j=1 lj.

In this case, The Jordanblocks J(αρ, kρ) and J(ζσ, lσ) have an overlap on
more than one position, while J(ζσ, lσ) is not covered by J(αρ, kρ). Define the
nonnegative integers

γ1 =
ρ−1∑

i=1

ki, γ2 = m−
σ∑

j=1

lj,

δ1 = m− γ1 − γ2 − kρ, δ2 = m− γ1 − γ2 − lσ.

γ2

δ1

kρ

γ1

γ2

lσ

δ2

γ1J(αρ, kρ)

J(ζσ, lσ)
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The preceding picture illustrates the position of the Jordan blocks J(αρ, kρ)
and J(ζσ, lσ) relative to each other. The integer values γ1, γ2, δ1, δ2 and kρ, lσ
determine the measure and position of these Jordan blocks. Then

p(Jα ⊕Om2) = Oγ1 ⊕ (J(0, kρ)⊕Oδ1)⊕Oγ2 ,

q(Jζ ⊕Om2) = Oγ1 ⊕ (Oδ2 ⊕ J(0, lσ))⊕Oγ2 .

Defining the m×m permutation matrix (n = m− γ1 − γ2)

Π =




O Iγ1 O
In O O
O O Iγ2


 ,

we get

Π−1p(Jα ⊕Om2)Π = (J(0, kρ)⊕Oδ1)⊕Oγ1+γ2 ,

and

Π−1q(Jζ ⊕Om2)Π = (Oδ2 ⊕ J(0, lσ))⊕Oγ1+γ2 .

We may now apply Corollary 3.8.2 to the matrices




J(0, kρ) O O
O Oδ1 O
O O Oγ1+γ2


 ,




Oδ2 O O
O J(0, lσ) O
O O Oγ1+γ2


 .

and obtain that this pair of matrices does not admit simultaneous reduction
to complementary triangular forms: Indeed, the overlap on more than one
diagonal position is described by

∑ρ
i=1 ki >

∑σ−1
j=1 lj + 1, or γ1 + kρ > m −

γ2 − lσ + 1, or kρ + lσ > n + 1, and we can apply Corollary 3.8.2. Since
J(0, kρ) ⊕ Oδ1 ⊕ Oγ1+γ2 = Π−1p(Jα ⊕ Om2)Π, and Oδ2 ⊕ J(0, lσ) ⊕ Oγ1+γ2 =
Π−1q(Jζ ⊕ Om2)Π, we obtain that also the pair Jα ⊕ Om2 , Jζ ⊕ Om2 does
not admit simultaneous reduction to complementary triangular forms. The
theorem is proved. 2

The following theorem concerns simultaneous reduction to complementary
triangular forms after extension with zeroes for pairs of nonderogatory Jordan
matrices. For such pairs of m1×m1 matrices A1, Z1 it holds that ρ0(A1, Z1) ∈
{m1,∞}.
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Theorem 3.8.8 Let A1 and Z1 be nonderogatory m1 ×m1 Jordan matrices,
and define the matrices A = A1 ⊕ Om2 and Z = Z1 ⊕ Om2. If the pair A,
Z admits simultaneous reduction to complementary triangular forms, then so
does the pair A1, Z1.

Proof If the pair A, Z admits simultaneous reduction to complementary
triangular forms, then, by Proposition 3.8.7, the Jordan matrices A1 and Z1

have no Jordanblocks with diagonal overlap on more than one position. By
Theorem 2.2.5, this implies that the pair A1, Z1 admits simultaneous reduction
to complementary triangular forms. The theorem is proved. 2
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Part II

Bounded Operators

75





Chapter 4

Nests of Subspaces and
Projections

In the first part of the thesis, Lemma 3.1.4 characterizes complementary tri-
angular forms for pairs of finite matrices in terms of nests of subspaces and
projections. In the literature, nests of subspaces have been used to define
triangular forms for bounded operators on an infinite dimensional Hilbert or
Banach space; see [20], [30] and [47].

In this Chapter, we introduce the notion of a simple nest of projections. We
shall use this notion in Chapters 5 and 6 to study complementary triangular
forms for pairs of bounded operators on an infinite dimensional Hilbert or
Banach space.

Simple nests of subspaces were discussed in [47], and it was shown there,
that these nest are exactly the maximal ones (Lemma 4.1.1). For nests of
projections, the situation is more complicated, and this chapter discusses these
matters in detail.

In Section 4.1, simple nests of projections are defined, and some well-known
examples of simple nests of projections are discussed.

In Section 4.2, the strong operator topology closure of nests of projections
is considered.

Section 4.3 studies simple nests of projections versus maximal nests of
projections in the case when the underlying Banach space is reflexive.

4.1 Simple Nests

This section defines simple nests of projections, and characterizes simple nests
of projections in terms of their nests of ranges and kernels (Theorem 4.1.3).

77
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At the end of this section, examples of simple nests are given.

A linear manifold M in a Banach space X is called a subspace , if it is closed
in the norm topology of X. If U ⊆ X is a subset, let cl U denotes its closure
in the norm topology of X and let span U denotes its closed linear span in X
with respect to the same topology. If {xn} is a sequence in X that converges

to x ∈ X in norm, we write xn
‖.‖→ x. Further, if {Tn} is a sequence of bounded

operators, then uniform convergence of the sequence to the bounded operator

T is denoted by Tn
‖.‖→ T . Convergence with respect to the strong operator

topology, i.e., pointwise convergence in norm, is denoted by Tn
s→ T .

The collection of subspaces in X is partially ordered by inclusion. To fix
notation, ”⊆” denotes inclusion, where equality may hold, and ”⊂” denotes
proper inclusion, i.e., where equality does not hold. Let S be a non-empty
collection of subspaces in X. A lower bound for S is a subspace L, such that
L ⊆ M for all M ∈ S. For a non-empty collection of subspaces S, the greatest
lower bound or infimum always exists and is given by

⋂{M | M ∈ S}. We will
denote this subspace by

∧S. An upper bound of the collection S is a subspace
N , such that M ⊆ N for all M ∈ S. The least upper bound or supremum of S
always exists, and is given by span{M | M ∈ S}, the closed linear hull of all
subspaces in S. This subspace will be denoted by

∨S.
A collection of subspaces M is called a nest of subspaces , if it is linearly

ordered, i.e., if M1,M2 ∈ M, then either M1 ⊆ M2 or M2 ⊆ M1. A subset
of a nest is called a subnest. Let M be a nest of subspaces and M1,M2 ∈ M
with M1 ⊆ M2. Define the interval

[M1,M2) = {M | M ∈M,M1 ⊆ M ⊂ M2}.
The intervals (M1, M2), (M1,M2] and [M1,M2] are defined in the same fashion.
Note that these intervals also depend on the underlying nest M. If the open
interval (M1,M2) = ∅, then the pair of subspaces M1,M2 is called a gap in
M. The dimension of the gap is then defined as the dimension of the quotient
space M2/M1.

A nest of subspaces is called maximal, if it is not properly contained in
any other nest. In [47], Ringrose proposed the following definition: A nest of
subspaces M is called simple, if it satisfies the following three conditions:

1. The trivial subspaces (0) and X are in M.

2. If M1 is a non-empty subnest of M, then the infimum
∧M1 and supre-

mum
∨M1 are in M.

3. All gaps in M (if there are any) are one-dimensional.
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If a nest of subspaces satisfies the first two conditions only, then it is called a
complete nest. The following lemma is taken from [47] (Lemma 1, p.369).

Lemma 4.1.1 A nest of subspaces is maximal if and only if it is simple.

Note that by Zorn’s lemma, maximal nests of subspaces in a Banach space
do exist.

We now turn to nests of projections. A projection P acting on a Banach
space X is a idempotent bounded linear operator (i.e., P 2x = Px for all
x ∈ X). One can define a partial ordering on the set of all projections on X as
follows: Given two projections P1, P2, stipulate P1 ≤ P2 if P1P2 = P2P1 = P1,
and P1 < P2 if in addition, P1 6= P2. Note that P1 ≤ P2 if and only if
Ran P1 ⊆ Ran P2 and Ker P2 ⊆ Ker P1. A collection of projections P is
called a nest, if it is linearly ordered, i.e., if P1, P2 ∈ P , then either P1 ≤ P2

or P2 ≤ P1. An upper bound of a collection of projections and related notions
are defined in a straightforward manner.

If P1 and P2 are two commuting projections, then define the infimum and
supremum of P1 and P2 respectively as

P1 ∧ P2 = P1P2, P1 ∨ P2 = P1 + P2 − P1P2.

In this manner, we may define the infimum and supremum of any finite set of
commuting projections. If S is a finite set of commuting projections, then the
supremum P0 of S satisfies

Ran P0 = span{Ran P | P ∈ S}, Ker P0 =
⋂{Ker P | P ∈ S}.

A nest of projections is a commuting set of projections. The following
questions now arise: Does each nest of projections have a least upper bound?
And if a nest of projections P has a least upper bound P0, does

Ran P0 = span{Ran P | P ∈ P}, Ker P0 =
⋂{Ker P | P ∈ P}. (4.1)

hold? Both questions are answered in the negative, as will be shown in Ex-
amples 4.3.5 and 4.3.7 respectively. For these reasons, we give the following
definition. An upper bound P0 for a nest of projections P is called a strong
supremum, if (4.1) is satisfied. It is immediate, that a strong supremum of
a nest of projections is also the least upper bound of the nest. If the strong
supremum of a nest P exists, it is denoted by

∨P . A projection Q0 is called
a strong infimum of the nest of projections P , if
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Ran Q0 =
⋂{Ran P | P ∈ P}, Ker Q0 = span{Ker P | P ∈ P}.

A strong infimum of a nest of projections is also the greatest lower bound for
the nest. The strong infimum of a nest of projections P , if it exists, will be
denoted by

∧P . A projection Q is a lower bound of a nest of projections, if
and only if I−Q is an upper bound for the nest Pc = {I−P | P ∈ P}. In this
fashion, results on least upper bounds and strong suprema have analogues for
greatest lower bounds and strong infima respectively.

A nest of projections is maximal, if it is not properly contained in any other
nest of projections. A nest of projections is called bounded, if it is a bounded
set with respect to the operator norm. Proposition 4.2.3 below shows that an
upper bound for a bounded nest of projections is a strong supremum if and
only if it is in the strong operator closure of the nest. Example 4.2.2 gives
a strong supremum of an unbounded nest, that is not in the strong operator
closure of the nest. For these and other reasons, we will in general assume nests
of projections to be bounded. Note that by Zorn’s lemma, maximal nests of
projections on a Banach space exist. The existence of a bounded maximal nest
of projections is not assured by Zorn’s lemma, however.

A pair of projections P1, P2 in the nest of projections P is a gap in P , if
P1 < P2 and

(P1, P2) = {P | P ∈ P , P1 < P < P2} = ∅.

The dimension of the gap P1, P2 is defined as rank(P2 − P1). A nest of pro-
jections P is a simple nest of projections , if it satisfies the following three
conditions:

1. The trivial projections O, I are in P .

2. For any non-empty subnest P1 ⊆ P , the strong supremum
∨P1 and

strong infimum
∧P1 exist, and are in P .

3. If P1, P2 is a gap in P , then rank(P2 − P1) = 1.

A nest of projections, which satisfies the first two conditions only, is called
a complete nest of projections. Having defined maximal and simple nests of
projections, the question arises whether the two notions are equivalent, as for
nests of subspaces (Lemma 4.1.1). The following lemma is a result in one
direction.
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Lemma 4.1.2 A simple nest of projections on a Banach space X is maximal.

Proof Assume that the nest of projections P is simple, but not maxi-
mal: There exists a projection Q 6∈ P , such that P ∪ {Q} is again a nest of
projections. Define the sets

P+ = {P | P ∈ P , P > Q}
and

P− = {P | P ∈ P , P < Q}.
Then P = P+ ∪ P− and P+ ∩ P− = ∅. Note that O ∈ P− and I ∈ P+. Define
P+ =

∧P+ and P− =
∨P−. Then P− ≤ Q ≤ P+. Since P−, P+ ∈ P and

Q 6∈ P , it follows that P− < Q < P+. Consequently, rank(P+ − P−) > 1.
On the other hand, the pair P−, P+ is a gap in P . A contradiction has been
obtained and the lemma is proved. 2

The converse of Lemma 4.1.2 does not hold in general. In Section 4.3, some
counterexamples are given: See Examples 4.3.5 and 4.3.6. The next propo-
sition characterizes a simple nest of projections in terms of its ranges and
kernels.

Theorem 4.1.3 A nest of projections P is simple if and only if the nests of
subspaces

{Ran P | P ∈ P}, {Ker P | P ∈ P}
both are simple.

Proof To prove the only if part, assume that the nest of projections P is
simple. We will prove here that the nest of subspacesM = {Ran P | P ∈ P} is
simple. The same argument, applied to the simple nest Pc = {I−P | P ∈ P},
proves that the nest of subspaces {Ker P | P ∈ P} is simple.

First, (0), X ∈ M, since O, I ∈ P . Second, if M1,M2 form a gap in
M, then there exist two projections P1, P2 ∈ P , such that M1 = Ran P1

and M2 = Ran P2. It follows that P1, P2 is a gap in P , so rank(P2 − P1) = 1.
Therefore, the quotient space M2/M1 is one-dimensional. Finally, letM1 ⊆M
be a non-empty subnest. To prove that

∨M1 ∈M, define

P1 = {P | P ∈ P , Ran P ∈M1}.
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Then P1 ⊆ P is a non-empty subnest. Therefore,
∨P1 ∈ P , and it follows that∨M1 = Ran (

∨P1) ∈M. In the same fashion, one proves that
∧M1 ∈M.

The if part is proved as follows. Assume that P is a nest of projections,
such that the nests of its ranges and its kernels are simple. It follows, by
reverting the relevant arguments given above, that O, I ∈ P and that all gaps
in P (if there are any) are one-dimensional. Let P1 ⊆ P be a non-empty
subnest, and let

M1 = span{Ran P | P ∈ P1}, N2 =
⋂{Ker P | P ∈ P1}.

There exist Q1, Q2 ∈ P , such that Ran Q1 = M1 and Ker Q2 = N2. If P ∈ P1,
then Ran P ⊆ M1, so P ≤ Q1. In other words, Q1 is an upper bound for
P1 and hence Ker Q1 ⊆ N2. It follows that Q2 ≤ Q1. On the other hand,
if P ∈ P1, then N2 ⊆ Ker P and P ≤ Q2. Therefore, M1 ⊆ Ran Q2 and
Q1 ≤ Q2 now follows. Hence, Q1 = Q2 =

∨P1 exists. Analogously, one proves
that

∧P1 exists. The theorem is proved. 2

We will now discuss some well-known examples of simple nests of projec-
tions. First of all, in Hilbert space, a maximal nest of subspaces M induces a
set of orthogonal (self-adjoint) projections

P = {P | Ran P = M, M ∈M}.

Note that the nests of subspaces

{Ran P | P ∈ P} = M, {Ker P | P ∈ P} = {M⊥ | M ∈M},

are maximal, so by Theorem 4.1.3, P is simple.
Other simple nests are those induced by bases on a Banach or Hilbert

space. Let X be a (separable) Banach space with Schauder basis {xn}∞n=1, i.e.,
a set of non-zero vectors {xn}∞n=1, such that each vector x ∈ X corresponds to
a unique sequence of scalars {ζn}∞n=1, with

x =
∞∑

n=1

ζnxn,

where the infinite sum converges in the norm topology. A Schauder basis
induces a bounded simple nest of projections in X. Indeed, for given n ∈ Z+,
consider the projection Pn of rank n defined as

Pn

∞∑

k=1

ζkxk =
n∑

k=1

ζkxk.
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The set P = {Pn | n ∈ Z+} ∪ {O, I} is a bounded nest of projections on
X, that strongly converges to the identity (Pn

s−→ I); see for example [40],
Proposition 1.a.2. Obviously, the trivial projections O and I are elements in
P . It is rather straightforward to verify that I =

∨{Pn | n ∈ Z+}. Further, it
is easy to see that all gaps in the nest are one-dimensional. It follows that P
is simple.

An orthonormal basis in a Hilbert space H is an orthonormal sequence of
vectors {en}∞n=1, that spans the whole space: span{en | n ∈ Z+} = H. The
Fourier expansion

x =
∞∑

n=1

(x, en)en, x ∈ H,

shows that an orthonormal basis is a Schauder basis. In fact, the simple nest of
projections induced by an orthonormal basis consists of orthogonal projections.

A Riesz basis in a separable Hilbert space H is the image of an orthonormal
basis in H under an invertible operator. In other words, if {xn}∞n=1 is a Riesz
basis, and {en}∞n=1 is an orthonormal basis, then there exists an invertible
operator T , such that Ten = xn for n ∈ Z+. For equivalent definitions of a
Riesz basis, we refer to [53], Section 1.8. Also, a Riesz basis is a Schauder
basis. As a matter of fact, it is rather difficult to find a bounded Schauder
basis in a Hilbert space, that is not a Riesz basis. For examples of so-called
conditional bases on a Hilbert space, we refer to [40], Proposition 2.b.11.

We state some additional examples of simple nests. In the following, fix
1 ≤ p < ∞. On Lp(0, 1), the projections

Ptf(x) =

{
f(x), 0 ≤ x ≤ t
0, t < x ≤ 1

for 0 ≤ t ≤ 1, define a simple continuous nest P = {Pt | 0 ≤ t ≤ 1}. On
Lp(0, 1)2, the projections

Qtf(x, y) =

{
f(x, y), 0 ≤ x ≤ t
0, t < x ≤ 1

for 0 ≤ t ≤ 1, define a simple continuous nest Q = {Qt | 0 ≤ t ≤ 1}. The nest
P defined above is essentially different from the nest Q; see [20]. On lp(Z)
with standard Schauder basis {en}n∈Z, the projections

Pn




∞∑

k=−∞
αkek


 =

n∑

k=−∞
αkek

define the simple nest {Pn | n ∈ Z} ∪ {O, I}.
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4.2 Closure of Nests

Proposition 4.2.1 below shows that a bounded and complete nest is a closed
set of operators in the strong operator topology. Before we state and prove
the proposition, we briefly present some topological prerequisites. Let (Y, τ)
be a topological space, such that each point of Y is a closed set (so it is a
T1-space).

A directed set A is a set with a partial ordering ¹, such that for all α, β ∈ A,
there exists γ ∈ A with α ¹ γ and β ¹ γ. The set {yα | α ∈ A} ⊆ Y is called
a net, if the set A is directed. A net {yα | α ∈ A} converges to y ∈ Y , if for
each open neighbourhood O of y, there exists α ∈ A, such that xβ ∈ O, for all
α ¹ β. Let S ⊆ Y be an arbitrary subset, and let S denotes its closure with
respect to the topology τ . Note that y ∈ S if and only if there exists a net in
S that converges to y.

Let {yα | α ∈ A} be a net, that converges to y ∈ Y . Assume that the
directed set A = A1 ∪ A2 is the union of two sets. Then either A1 or A2 is
directed, and it follows that either {yα | α ∈ A1} or {yα | α ∈ A2} contains a
net that converges to y.

In the proposition below, we will consider the space of all bounded oper-
ators on a Banach space, equipped with the strong operator topology. The
strong operator closure of a set of bounded operators S is denoted by S.

Proposition 4.2.1 A bounded and complete nest of projections on a Banach
space X is closed with respect to the strong operator topology.

Proof Let P be a bounded and complete nest of projections on X. We
need to prove that P = P , i.e., that the nest equals its closure in the strong
operator topology. Clearly, the nest is contained in its closure. To prove the
other inclusion, let T ∈ P . By the discussion before the proposition, there
exists a net P1 = {Pα | α ∈ A} ⊆ P , that converges to T in the strong
operator topology. Since P is bounded, it follows that T is a projection which
commutes with all P ∈ P . We need to prove that in fact T ∈ P . If T = O or
T = I, this is immediate, so we may assume that T is a non-trivial projection.
Fix P ∈ P and define the following two sets

Q+ = {Pα | α ∈ A,Pα ≥ P},

Q− = {Pα | α ∈ A,Pα ≤ P}.
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Since Q+ ∪ Q− = P1, at least one of the subsets Q+ or Q− contains a net
that converges to T . If Q− contains a net {Pα} convergent to T , then P =
PPα

s−→ PT , so T ≥ P . If Q+ contains a net {Pα} convergent to T , then
I − P = (I − P )(I − Pα)

s−→ (I − P )(I − T ), so T ≤ P . Assume that T 6∈ P
and define the subnests

P+ = {P | P ∈ P , P > T},

P− = {P | P ∈ P , P < T}.

Note that O ∈ P− and that I ∈ P+. For each P ∈ P , either T ≤ P or T ≥ P
hence T < P or T > P , so P−∪P+ = P . Let P+ =

∧P+ and P− =
∨P−. Then

P−, P+ ∈ P and P− ≤ T ≤ P+. Since T 6∈ P , we obtain that P− < T < P+.
In other words, Ran P− ⊂ Ran T ⊂ Ran P+ and Ker P− ⊃ Ker T ⊃ Ker P+.
There exist x, y ∈ X, ‖x‖ = ‖y‖ = 1, such that

P−x = 0, Tx = x, P+x = x,
P−y = 0, T y = 0, P+y = y.

Since (P+ ∩P1)∪ (P− ∩P1) = P1, at least one of the sets P+ ∩P1 or P− ∩P1

contains a net that converges to T . Note that if Pα ∈ P−, then Pα ≤ P−,
and if Pα ∈ P+, then Pα ≥ P+. But, if P+ ∩ P1 contains a convergent net,

then y = Pαy
‖.‖−→ Ty = 0 (Pα ∈ P+), a contradiction. On the other hand,

if P− ∩ P1 contains a convergent net, it follows that 0 = Pαx
‖.‖→ Tx = x

(Pα ∈ P−), which also leads to a contradiction. Therefore, T ∈ P and the
proposition is proved. 2

In general, a closed and bounded nest of projections in a Banach space
need not be complete, as Example 4.2.2 below shows. In a reflexive Banach
space however, closed and bounded nests of projections, that contain the trivial
projections O and I, are complete. This is shown in the next section, Corollary
4.3.3.

Example 4.2.2 Let X = L∞[0, 1] and for 0 ≤ τ ≤ 1, define the projections

Pτf(x) =

{
f(x) 0 ≤ x ≤ τ
0 τ < x ≤ 1

.

Note that if 0 ≤ σ < τ ≤ 1 and e(x) = 1 for almost all x ∈ [0, 1], then
‖Pτe − Pσe‖∞ = 1. Also, ‖Pτ‖ = 1 for 0 < τ ≤ 1. Let τk = 1

2
− (1

2
)k, then
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τk → 1
2

as k →∞, while the sequence {Pτk
| k ∈ Z+} does not have a Cauchy

subsequence. For this reason, the nest

P = {Pτk
| k ∈ Z+}

is closed, although it is not complete; the strong supremum
∨P does not exist:

Indeed, we have the proper inclusion

span{Ran Pτk
| k ∈ Z+} ⊂ L∞[0,

1

2
],

while on the other hand,

⋂{Ker Pτk
| k ∈ Z+} = L∞[

1

2
, 1].

In Example 4.2.2, the strong supremum
∨P did not exist. Proposition 4.2.3

below shows that this is due to the fact that no upper bound for this nest is
in the strong operator closure of the nest.

Proposition 4.2.3 Let P be a bounded nest of projections and let P0 be an
upper bound for P. Then the following are equivalent:

1. P0x ∈ cl{Px | P ∈ P} for all x ∈ X,

2. P0 =
∨P,

3. P0 ∈ P.

Before proving this proposition, we make a few observations. A net of
projections {Pα | α ∈ A} is called directed upwards, if for α, β ∈ A, α ¹ β if
and only if Pα ≤ Pβ. If an upper bound P0 for the nest of projections P is
contained in the strong operator closure, then P itself is an upwards directed
net of projections, that converges to P0 in the strong operator norm. This will
be shown in the proof of Proposition 4.2.3. A result in the same direction as
Proposition 4.2.3 is Theorem 1 in [4].

Proof To prove that the first statement implies the second one, let y ∈
Ran P0. By assumption, {Py | P ∈ P} has P0y = y as a limit point. Therefore,
y ∈ M = cl{Ran P | P ∈ P}, and Ran P0 ⊆ M follows. Since P0 is
an upper bound for P , also M ⊆ Ran P0, and we get M = Ran P0. Let
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x ∈ N =
⋂{Ker P | P ∈ P}. Then P0x = 0, since P0x is a limit point of

{Px | P ∈ P} = {0}. Therefore, x ∈ Ker P0, and N ⊆ Ker P0 follows. Again,
since P0 is an upper bound for P , we obtain Ker P0 = N . We conclude that
P0 =

∨P .

To prove that the second statement implies the first one, assume that
‖P‖ ≤ C for all P ∈ P . Let x ∈ X, then y = P0x ∈ Ran P0. Let ε > 0. There
exist Pε ∈ P , and yε ∈ Ran Pε, such that ‖y − yε‖ < ε. Consequently,

P0x− Px = P0x− yε + yε − Px = (y − yε) + P (yε − P0x) =

(y − yε) + P (yε − y) = (I − P )(y − yε).

Therefore,

‖P0x− Px‖ ≤ (1 + C)‖y − yε‖ ≤ (1 + C)ε.

Since ε > 0 was taken arbitrary, P0x ∈ cl{Px | P ∈ P}. Further, x ∈ X was
taken arbitrary, so the first statement now follows.

It is immediate, that the third statement implies the first one. We now
prove that the first statement implies the third one. We prove that each open
neighbourhood (in the strong operator topology) of P0 of the form

O =
n⋂

k=1

{S | ‖P0xk − Sxk‖ < ε}

for arbitrary n ∈ Z+, x1, . . . , xn ∈ X, ε > 0 contains all projections in P , that
are greater or equal to a certain projection in P . Let O be a neighbourhood of
P0 as above, and let k ∈ {1, . . . , n}. Since P0xk ∈ cl{Px | P ∈ P}, there exists
Pk ∈ P , such that ‖P0xk − Pkxk‖ ≤ ε/(1 + C). Now let P =

∨{P1, . . . , Pn}.
For each Q ≥ P , we get (I −Q)(P0 − Pk) = P0 −Q, so

‖P0xk −Qxk‖ ≤ (1 + C)‖P0xk − Pkxk‖ < ε.

Consequently, Q ∈ O and we have proved the proposition. In fact, the nest P
itself is an upwards directed net that converges to its strong supremum. 2

The following example shows, that a simple (complete) nest of projections
acting on a Banach space need not be bounded or closed.
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Example 4.2.4 Consider the Hilbert space X = l2(Z
+), with standard or-

thonormal basis {ek}∞k=1. For each n ∈ Z+, consider the projection Pn of rank
n, defined by

Pnek =

{
ek + (−1)n−ken+1, 1 ≤ k ≤ n
0, k > n

.

Then

Ran Pn = span{e1 + e2, . . . , en + en+1},

Ker Pn = span{e1, . . . , en}⊥.

It follows that Pn < Pn+1 for all n ∈ Z+, and that

span{Ran Pn | n ∈ Z+} = l2(Z
+),

⋂{Ker Pn | n ∈ Z+} = (0).

For this reason,
∨{Pn | n ∈ Z+} = I exists. Moreover,

P = {Pn | n ∈ Z+} ∪ {O, I}
is a simple nest of projections. On the other hand, if we fix n ∈ Z+, and write
x = ( (−1)n−1, (−1)n−2, · · · , −1, 1, 0, · · · )T , then Pnx = x + nen+1, so
‖Pnx‖2 = ‖x‖2 + n2. Since ‖x‖ =

√
n, we get

‖Pn‖ ≥ ‖Pnx‖
‖x‖ =

√
n + 1.

Thus the simple nest of projections P is not bounded. Note that Proposition
4.2.3 now fails; the subnest P1 = {Pn | n ∈ Z+} has strong supremum

∨P1 =
I, but I 6∈ P1: Indeed, Pne1 = e1 + (−1)n−1en+1 does not converge to e1 in
norm.

A Boolean algebra B of projections is a commuting set of projections, that
satisfies the following condition: I ∈ B, and if P, Q ∈ B, then P ∧ Q ∈ B,
P ∨Q ∈ B, and I−P ∈ B. One could, for example, consider Boolean algebras
generated by a nest of projections. In contrast to the situation for nests (see
Example 4.2.4), a complete Boolean algebra is necessarily bounded (Theorem
2.2 in [3]). On the other hand, the completeness result Proposition 4.2.3 is
analogous to Lemma 2.3 in [3].
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4.3 Nests in Reflexive Banach Spaces

In this section, we will discuss a converse of Lemma 4.1.2 in a reflexive Banach
space: Theorem 4.3.4 below states that a bounded and maximal nest of projec-
tions acting on a reflexive Banach space is simple. Even in Hilbert space, there
exist nests of projections (Example 4.3.5) which are maximal, but not simple.
However, these nests of projections are not bounded. On the other hand, there
exist nests of projections on a nonreflexive Banach space, which are bounded
and maximal, but not simple (Example 4.3.6). Corollary 4.3.3 shows that in
reflexive Banach spaces, a closed and bounded nest is complete. This is a
converse to Proposition 4.2.1 in a reflexive Banach space. For preliminaries
concerning the conjugate space of a Banach space, we refer to [2].

First, we fix some notation. Let the conjugate space of a Banach space X
be denoted by X∗. The conjugate operator of a bounded operator T on X is
denoted by T ∗. If U ⊆ X is a non-empty subset, its annihilator is given by

U⊥ = {f | f ∈ X∗, f(x) = 0 for all x ∈ U}.
If U = ∅, define U⊥ = X∗. If V ⊆ X∗ is a non-empty subset, then its inverse
annihilator is defined as

⊥V = {x | x ∈ X, f(x) = 0 for all f ∈ X∗}.
If V = ∅, define ⊥V = X.

In [41], the main ingredients are given to prove that maximal, bounded
nests on a reflexive Banach space are simple. The following lemma is well-
known and can be found in e.g. [33] (Corollary 1.8.8).

Lemma 4.3.1 Two closed subspaces M, N in a Banach space have zero in-
tersection and closed sum if and only if there exists k > 0, such that for all
x ∈ M and y ∈ N ,

‖x + y‖ ≥ k‖x‖.

The following theorem is contained in [41]. The proof of the theorem is
instructive and therefore included here.

Theorem 4.3.2 If P is a bounded nest of projections on a reflexive Banach
space X, then its strong supremum

∨P and its strong infimum
∧P exist.
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Proof Consider the bounded nest P and let 0 < C < ∞, such that ‖P‖ ≤
C for all P ∈ P . We first prove that

∨P exists. To this end, we will show
that the subspaces

M = span{Ran P | P ∈ P}
and

N =
⋂{Ker P | P ∈ P}

satisfy M⊕N = X. Indeed, let x ∈ M and y ∈ N . Then Py = 0 for all P ∈ P
and there exist Pn ∈ P and xn ∈ Ran Pn, such that xn

‖.‖−→ x, as n → ∞.
Therefore,

‖xn‖ = ‖Pn(xn + y)‖ ≤ C‖xn + y‖.
If we let n tend to infinity at both sides, we get ‖x‖ ≤ C‖x + y‖ or

‖x + y‖ ≥ k‖x‖,
with k = 1/C > 0. Lemma 4.3.1 implies that the subspaces M and N have
zero intersection and have closed sum. In other words, M ⊕N ⊆ X is a closed
subspace.

Consider the adjoint nest of projections P∗ = {P ∗ | P ∈ P}, and the
subspaces

M∗ = span{Ran P ∗ | P ∈ P}
and

N∗ =
⋂{Ker P ∗ | P ∈ P}.

Note that P∗ is again a bounded nest of projections, so a similar argument
can be applied to obtain that the subspaces M∗ and N∗ have zero intersection
and closed sum. Further, X = ⊥(0) = ⊥(M∗ ∩N∗), and reflexivity of X gives

⊥(M∗ ∩N∗) = cl(⊥M∗ + ⊥N∗).

We find ⊥M∗ = N , and by reflexivity of X, we get ⊥N∗ = M . Since M + N
is closed, it follows that M + N = X. Apply the argument presented here to
Pc to obtain that

∧P exists. 2

The following corollary to Theorem 4.3.2 is a converse to Proposition 4.2.1
in a reflexive Banach space.
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Corollary 4.3.3 Each closed and bounded nest of projections on a reflexive
Banach space containing the trivial projections O and I is complete.

Proof Let P be a closed and bounded nest of projections acting on the
reflexive Banach space X, and assume that P contains the trivial projections
O and I. Let P1 ⊆ P be a non-empty subnest. We need to prove that

∨P1 and∧P1 are in P . By Theorem 4.3.2, these two projections exist. By Proposition
4.2.3, the projections are in the strong closure P1. Since P1 ⊆ P , and since P
is closed, the projections

∨P1 and
∧P1 are in P . 2

We now state a converse to Lemma 4.1.2 in a reflexive Banach space.

Theorem 4.3.4 A maximal, bounded nest of projections in a reflexive Banach
space is simple.

Proof Let P be a maximal, bounded nest in a reflexive Banach space. It
follows that O, I ∈ P , since enlarging P with these trivial projections would
otherwise result in a nest of subspaces properly containing P , contrary to
its maximality. If P1 ⊆ P is a subnest, then the strong infimum

∧P1 and
the strong supremum

∨P1 are in P , since Theorem 4.3.2 implies that the
collection P ∪ {∧P1,

∨P1} is again a nest. If P1, P2 form a gap in P of
dimension greater than one, then choose 0 6= x ∈ Ran (P2 − P1) and the
subspace M ⊂ Ran (P2−P1) such that span{x}⊕M = Ran (P2−P1). Notice
that M 6= (0), since rank(P2−P1) > 1. Define the mapping R on X by Ry = y
for y ∈ Ran P1, Rx = x, Rm = 0 for m ∈ M , and Rz = 0 for z ∈ Ker P2.
Since X = Ran P1 ⊕ span{x} ⊕M ⊕Ker P2, it follows that R is a projection
and that P1 < R < P2. The collection P∪{R} is a nest of projections properly
containing P , a contradiction. Therefore, rank(P2 − P1) = 1. The nest P is
simple by definition and the theorem is proved. 2

We will now present an example of a nest of projections in a Hilbert space
which is maximal, but not simple. Since it is not bounded, the example does
not contradict the statement of Theorem 4.3.4.

Example 4.3.5 Consider the Hilbert space X = l2(Z
+) and let {en}∞n=1 de-

note its standard orthonormal basis. Define the vectors

xn = 3
5
en + 4

5
en+1, n ∈ Z+.

It is not difficult to see that

span{x1, . . . , xn} ⊕ span{e1, . . . , en}⊥ = X,
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for all n ∈ Z+. Fix n ∈ Z+. The subspaces

M = span{x1, x3, . . . , x2n−1},

and

N = span{x2, x4, . . . , x2n} ⊕ span{e1, e2, . . . , e2n}⊥

complement each other. Let Pn denote the projection onto M along N . In the
same fashion, for fixed m ∈ Z+, consider the projection Qm onto

span{x2, x4, . . . , x2m}

along

span{x1, x3, . . . , x2m−1} ⊕ span{e1, e2, . . . , e2m}⊥.

It follows that Ran Qm ⊆ Ker Pn and that Ran Pn ⊆ Ker Qm, so PnQm =
QmPn = O. In other words,

Pn < I −Qm, n, m ∈ Z+.

Consider the nest of projections

P = {O, I} ∪ {Pn | n ∈ Z+} ∪ {I −Qm | m ∈ Z+}.

We will show that P is maximal, not bounded and not simple.
Assume there exists a projection R, such that Pn ≤ R for n ∈ Z+ and such

that R ≤ I −Qm for all m ∈ Z+. Then

span{Ran Pn | n ∈ Z+} ⊆ Ran R ⊆ ⋂{Ker Qm | m ∈ Z+}

and

span{Ran Qm | m ∈ Z+} ⊆ Ker R ⊆ ⋂{Ker Pn | n ∈ Z+}.

Since

V = span{Ran Pn | n ∈ Z+} =
⋂{Ker Qm | m ∈ Z+} =

span{x2k−1 | k ∈ Z+}

and
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W = {Ran Qm | m ∈ Z+} =
⋂{Ker Pn | n ∈ Z+} =

span{x2k | k ∈ Z+},
it follows that Ran R = V and that Ker R = W . On the other hand, V +W =
span{xk | k ∈ Z+} 6= X, a contradiction. Indeed,

y =
(

1, −3

4
, (−3

4
)2, · · ·

)T

∈ (V + W )⊥.

Consequently, for each upper bound P+ of P1 = {Pn | n ∈ Z+}, there
exists m ∈ Z+, such that I − Qm < P+. Since I − Qm is itself an upper
bound of P1, it follows that there exists no least upper bound of the subnest
P1. In the same fashion one proves that there exists no greatest lower bound
for {I −Qm | m ∈ Z+}. We may conclude that the nest P is not simple. On
the other hand, the nest P is maximal. Indeed, let R be a projection, such
that P ∪{R} is a nest which properly contains P . It follows that R < I −Qm

for all m ∈ Z+ and that Pn < R for all n ∈ Z+. We have already proved that
such a projection R does not exist. Further, it is not difficult to see that for
k ∈ Z+,

e1 =




k∑

j=1

5

3
(−4

3
)j−1xj


 + (−4

3
)kek+1.

For n ∈ Z+, define the projection

Rn = Pn ∨Qn = Pn + Qn − PnQn = Pn + Qn,

where we used that PnQn = QnPn = O. Then rank Rn = 2n, and

Ran Rn = span{x1, x2, . . . , x2n},

Ker Rn = span{e1, e2, . . . , e2n}⊥.

Consequently,

(I −Rn)e1 = e1 −
2n∑

j=1

5

3
(−4

3
)j−1xj = (−4

3
)2ne2n+1,

so ‖I − Qn‖ + ‖Pn‖ ≥ ‖I − Rn‖ ≥ ‖(I − Rn)e1‖ = (4
3
)2n. It follows that the

nest P is not bounded.
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The following example is a maximal, bounded nest of projections in a
nonreflexive Banach space, which is not simple.

Example 4.3.6 The sequence space

c = {(ξ1, ξ2, ξ3, . . .) | lim
k→∞

ξk ∈ C}

is a nonreflexive Banach space with the supremum-norm. The subset of all
zero-sequences

c0 = {x = (ξ1, ξ2, ξ3, . . .) | lim
k→∞

ξk = 0}

is a closed subspace of c of codimension one. If x = (ξ1, ξ2, ξ3, . . .) ∈ c0, then
x =

∑∞
k=1 ζkek converges in the supremum-norm. The set {ek | k ∈ Z+} is

a Schauder basis in c0. If x = (ξ1, ξ2, ξ3, . . .) ∈ c and limk→∞ ξk = ξ0, then
x− (ξ0, ξ0, ξ0, . . .) =

∑∞
k=1(ξk− ξ0)ek ∈ c0. Note that e0 = (1, 1, 1, . . .) ∈ c, but

e0 6∈ c0. Further,

x = ξ0e0 +
∞∑

k=1

(ξk − ξ0)ek

converges in the supremum-norm. It follows that the set {ek | k ∈ Z+
0 } is a

Schauder basis in the whole space c.
The construction of the example here is analogous to the construction in

Example 4.3.5. For n,m ∈ Z+, the projections

Pn(ξ1, ξ2, . . . , ) = (ξ1, 0, ξ3, 0, . . . , 0, ξ2n−1, 0, 0, . . .),

and

Qm(ξ1, ξ2, . . . , ) = (0, ξ2, 0, ξ4, 0, . . . , 0, ξ2m, 0, 0, . . .)

satisfy

Pn < I −Qm, n,m ∈ Z+.

Define the nest of projections

P = {Pn | n ∈ Z+} ∪ {I −Qm | m ∈ Z+} ∪ {O, I}.

We will show that P is maximal and bounded, but not simple. As in Example
4.3.5, there exists no projection R, such that Pn ≤ R for n ∈ Z+ and such
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that R ≤ I − Qm for all m ∈ Z+. Again, we may conclude that the nest
P is not simple, since there exist subnests of P which neither have greatest
lower bound nor least upper bound. Following the same type of argument as
in Example 4.3.5, the nest P is maximal. Finally, it is not difficult to see that

sup{‖P‖ | P ∈ P} = 1.

In the following example, we present a nest of projections on a Hilbert space,
that has a least upper bound, which is not its strong supremum.

Example 4.3.7 As in Example 4.3.5, consider the Hilbert space X = l2(Z
+)

and let {en}∞n=1 denote its standard orthonormal basis. Define the vectors

xn = 3
5
en + 4

5
en+1, n ∈ Z+.

For n ∈ Z+, the projections Pn onto span{x1, . . . , xn} along span{e1, . . . , en}⊥
define a nest of projections P = {Pn | n ∈ Z+}. Since

span{Ran Pn | n ∈ Z+} = span

{ ∞∑

k=1

(−3

4
)k−1ek

}⊥

and

⋂{Ker Pn | n ∈ Z+} = (0),

it follows that P has least upper bound I, which is not a strong supremum of
P .
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Chapter 5

Finite Rank Operators

In this chapter, complementary triangular forms for pairs of finite rank op-
erators acting on an infinite dimensional Banach space are studied. It will
be shown that the study of complementary triangular forms for pairs of finite
rank operators reduces more or less to the matrix problem studied in Chapter
3; see Theorem 5.3.1 and Proposition 5.3.2. In fact, the approach presented
in this chapter sheds new light on the matters discussed in Chapter 3; see
Corollary 5.3.3.

5.1 Matrix Reductions

In this section, we introduce the notion of a matrix reduction for a set of finite
rank operators. This notion is based on the fact, that a finite rank operator
is, roughly speaking, the direct sum of a finite matrix and a zero operator.

Let A be a finite rank operator acting on the Banach space X, i.e., A is a
bounded operator on X, such that the linear manifold Ran A = {Ax | x ∈ X}
is finite dimensional. In that case, since Ran A and X/Ker A are linearly
isomorphic, it follows that

rank A = dim Ran A = dim(X/Ker A).

A bounded operator A on X is reduced by a projection P on X, if AP = PA.
Assume, in addition, that AP = PA = A, hence A = PAP . Write M = Ran P
and N = Ker P , then with respect to the decomposition X = M ⊕ N , the
operator A assumes the form

A =

(
AM O
O ON

)
.

97
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If A = PAP and rank P < ∞, then obviously, rank A < ∞. The following
lemma states a converse to this fact. Actually, the lemma involves a finite set
of finite rank operators.

Lemma 5.1.1 Let A be a finite set of finite rank operators. Then there exists
a finite rank projection P , such that A = PAP for all A ∈ A.

Proof Write M0 = span{Ran A | A ∈ A}, and N0 =
⋂{Ker A | A ∈ A}.

The subspace M0 + N0 ⊆ X is closed and of finite codimension. Therefore,
there exists a finite dimensional subspace R, such that (M0 + N0) ⊕ R = X.
Observe that M = M0 ⊕ R is also a finite dimensional subspace, and that
M + N0 = X. Let N ⊆ N0, such that M ⊕ N = X. This defines the finite
rank projection P onto M along N , i.e., Ran P = M and Ker P = N . This
establishes the lemma. 2

Let A be a finite rank operator acting on X. By lemma 5.1.1, there exists
a finite rank projection P , such that A = PAP . The restriction of A to
M = Ran P , written AM , can be identified with a finite matrix by fixing a
basis in the finite dimensional subspace M . This matrix is determined up
to similarity. Therefore, we can compute the Jordan Canonical form of AM .
Indeed, for α ∈ σ(AM), compute dk(α) = dimKer(αIM −AM)k for 1 ≤ k ≤ m,
and define d0(α) = 0. It is well-known (see for example [38]), that the number
of α-Jordan blocks of size k is given by

nk(λ) = [dk+1(λ)− dk(λ)]− [dk(λ)− dk−1(λ)] . (5.1)

It is our aim to describe the Jordan canonical form of AM -as far as possible-
in terms of the original finite rank operator A. Since Ker A = Ker AM⊕N , we
know beforehand, that the number d1(0) = dim Ker AM will not only depend
on A, but also on the dimension of M . Therefore, we will treat the case λ = 0
separately.

We will first show that the number of λ-Jordanblocks of AM for λ 6= 0 only
depends on A, and not on M . Indeed, let λ be a non-zero complex number.
Then Ker(λIM − AM)k = Ker(λIX − A)k, hence dk(λ) = dim Ker(λIX − A)k.
Therefore, the number of λ-Jordanblocks for AM of a given size is determined
by the finite rank operator A through formula (5.1).

We now treat the case λ = 0. Note that Ker Ak = Ker Ak
M⊕N . Therefore,

dk+1(0)− dk(0) = dim
(
Ker(λIM − AM)k+1/Ker(λIM − AM)k

)
=

dim
(
Ker(λIX − A)k+1/Ker(λIX − A)k

)
.
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It follows that the numbers nk(0) are determined by A for k ≥ 2, again by
formula (5.1). The number n1(0), the number of 0-Jordanblocks of AM of size
one, needs some special attention. Formula (5.1) gives

n1(0) = [d2(0)− d1(0)]− [d1(0)− d0(0)] .

Note that d1(0)− d0(0) = dim Ker AM = dim M − rank A. Thus

n1(0) = dim
(
Ker A2/Ker A

)
+ dim M − rank A

does not only depend on A, but also on dim M . In particular, if dim M =
rank A− dim (Ker A2/Ker A), then n1(0) = 0.

A triple (M, N,AM) is a matrix reduction for a collection A of finite rank
operators, if M, N ⊆ X are subspaces, and AM is a set of finite matrices, such
that

1. dim M < ∞, and M ⊕N = X,

2. Ran A ⊆ M and N ⊆ KerA for all A ∈ A,

3. AM = {AM | A ∈ A}.

To clarify the notion of a matrix reduction, we give an example.

Example 5.1.2 Consider the set of finite rank operators A = {A,B} acting
on the separable Hilbert space l2(Z

+). With respect to the orthonormal basis
{ek}∞k=1, let A and B be given by the infinite matrices

A =




0 0 0 · · ·
1 0 0 · · ·
1
2

0 0 · · ·
1
4

0 0 · · ·
...

...
...

. . .




, B =




0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .




.

We will construct a matrix reduction for the set A, using Lemma 5.1.1. Let

v =
(

0, 1, 1
2
, 1

4
, · · ·

)T
. Note that M0 = Ran A + Ran B = span{e2, v}.

Further, N0 = Ker A ∩ Ker B = span{e1}⊥. It follows that M0 + N0 =
span{e1}⊥. Following the proof of Lemma 5.1.1, choose R = span{e1}, to
obtain M = span{e1, e2, v}. Next, choose N = M⊥. This provides a matrix
reduction (M, N, {AM , BM}) for {A,B}, where
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AM =




0 0 0
0 0 0
1 0 0


 , BM =




0 0 0
1 0 0
0 0 0


 .

Note that both AM and BM have the Jordan canonical form

J =




0 1 0
0 0 0
0 0 0


 .

It should be noted that a matrix reduction (M, N,AM) for a given set of
finite rank operators A is not unique. On the other hand, it appears that all
matrix reductions for a given set of finite rank operators are closely related.
This is described in the following proposition. The proof contains elements of
the discussion on ”Angular subspaces and angular operators” in [6], Section
5.1.

Proposition 5.1.3 Let A be a set of finite rank operators with two matrix
reductions (M, N,AM) and (M1, N1,AM1). Write dim M = m, dim M1 = m1,
and assume that m − m1 = m2 ≥ 0. Let N2 ⊆ N1 be an m2-dimensional
subspace. Then there exists an invertible operator Q : M −→ M1 ⊕ N2, such
that QAMQ−1 = AM1 ⊕ON2, for all A ∈ A.

To prove this proposition, we will need the following technical lemma.

Lemma 5.1.4 Let V1, V2 ⊆ X be subspaces in a Banach space X, such that

dim(X/V1) = dim(X/V2) = k < ∞.

Then there exists a k-dimensional subspace R ⊆ X, such that

V1 ⊕R = V2 ⊕R = X. (5.2)

Proof We start with the following simple remark: If W1,W2 ⊂ X are
proper subspaces, then W1 ∪W2 is also properly contained in the whole space
X. Indeed, to avoid trivialities, we may assume that W1 6⊆ W2, and that
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W2 6⊆ W1. Let w1 ∈ W1\W2 and w2 ∈ W2\W1. If W1 ∪ W2 = X, then
w1 + w2 ∈ W1 or w1 + w2 ∈ W2. Thus w1 ∈ W2 or w2 ∈ W1, a contradiction.

We prove the lemma by induction on the integer k. Indeed, if k = 0, then
the statement is trivial. Assume that the statement of the lemma holds for
k = 0, . . . , n− 1, with n a fixed positive integer. Let V1, V2 ⊂ X be subspaces
such that dim(X/V1) = dim(X/V2) = n. By the remark at the beginning of
the proof, there exists r ∈ X such that r 6∈ V1 ∪ V2. Let V̂ν = Vν ⊕ span{r}
for ν = 1, 2. Then V̂1, V̂2 ⊆ X are closed subspaces such that dim(X/V̂1) =
dim(X/V̂2) = n − 1. We may apply the induction hypothesis to obtain an
n − 1 dimensional subspace R̂, such that V̂ν ⊕ R̂ = X for ν = 1, 2. The n
dimensional subspace R = R̂⊕span{r} complements the subspaces V1, V2, and
the lemma is proved. 2

Proof of Proposition 5.1.3 First of all, write M3 = M1 ⊕ N2, and let
N3 ⊆ N1 satisfy N3⊕N2 = N1. Then (M3, N3,AM3) is also a matrix reduction
for A, and dim M3 = dim M . Let M̃ = M ∩ M3, and define V = M̃ ⊕ N
and V3 = M̃ ⊕ N3. Then dim(X/V ) = dim(X/V3) < ∞, so by Lemma 5.1.4,
there exists a finite dimensional subspace R, such that V ⊕R = V3 ⊕R = X.
Let P, P3 be finite rank projections on X, with Ran P = M , Ker P = N and
Ran P3 = M3, Ker P3 = N3. Then (see Section 5.1 in [6])

T = P |M̃⊕R : M̃ ⊕R −→ M, T3 = P3|M̃⊕R : M̃ ⊕R −→ M3,

are invertible operators, since (M̃ ⊕ R) ∩ Ker P = (M̃ ⊕ R) ∩ Ker P3 = (0).
Therefore, the operator

Q = T3T
−1 : M −→ M3

is invertible. We will prove that QAM = AM3Q for all A ∈ A. First of all,
note that AP = PA = AP3 = P3A = A. Let x ∈ M , then M = P (M̃ ⊕ R) =
M̃ ⊕ P (R) implies that there exist m̃ ∈ M̃ and r ∈ R, such that x = m̃ + Pr.
Then AMx = AMm̃ + AMPr = Am̃ + APr = Am̃ + Ar = A(m̃ + r). Further,
T−1AMx = AMx, since AMx ∈ Ran A ⊆ M̃ , and QAMx = T3T

−1AMx =
T3AMx = AMx, for the same reason.

On the other hand, AM3Qx = AM3T3T
−1(m̃ + Pr) = AM3T3(m̃ + r) =

AM3(m̃ + P3r) = Am̃ + AP3r = A(m̃ + r). Hence, QAM = AM3Q. 2

5.2 Finite Rank Operators and Nests

In this section, we study the action of a finite rank operator on a (simple) nest
of subspaces or projections. First, we introduce the notions of an invariant
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subspace and an invariant projection. For an introduction to the theory of
invariant subspaces, see [17].

Let A be a bounded operator acting on a Banach space X. A subspace
M ⊆ X is an invariant subspace for A, if x ∈ M implies that Ax ∈ M .
Write AM ⊆ M . A nest of subspaces is called an invariant nest for A, if
the nest consists of invariant subspaces for A. In general, a bounded operator
acting on a Banach space need not have an invariant subspace, other than the
trivial subspaces; (0) and X (cf. [25]). By the well-known result of Aronszajn
and Smith [1] however, each compact operator acting on a Banach space of
dimension greater than one has a non-trivial invariant subspace. It even follows
(see for example Theorem 1 in [47]) that a compact operator has a simple nest
of invariant subspaces. A projection P is invariant for the bounded operator A,
if AP = PAP , or equivalently, if Ran P is an invariant subspace for A. Recall
that only in a Banach space isomorphic to a Hilbert space, all subspaces are
complemented, i.e., are the range of some bounded projection (cf. [39]). The
existence of a Banach space on which only bounded projections act that are
either finite rank or Fredholm [32], leads to the existence of a compact operator
on that space, that has no invariant projections other than the trivial ones; O
and I [44].

A nest of projections is called invariant for a bounded operator A, if all
projections in the nest are invariant for A. The bounded operator A is called
upper triangular with respect to a nest of projections or subspaces, if the nest is
invariant for A. A bounded operator is called lower triangular with respect to a
nest of projections P , if it is upper triangular with respect to {I−P | P ∈ P},
or in other words, upper triangular with respect to {Ker P | P ∈ P}. Finally,
a bounded operator is called diagonal with respect to a nest of projections, if
it is both upper triangular and lower triangular with respect to the nest.

Let M be a complete nest of subspaces. For M ∈M, define

M− = span {L | L ∈M, L ⊂ M}

and

M+ =
⋂ {N | N ∈M,M ⊂ N} .

If there exists no L ∈ M such that L ⊂ M , then define M− = (0), and if
there exists no N ∈ M such that M ⊂ N , then define M+ = X. Further, if
M− 6= M , then M− ⊂ M is called the immediate predecessor of M in M. In
that case, (M−)+ = M . Indeed, M− ⊂ M gives

(M−)+ =
⋂{N | N ∈M,M− ⊂ N},
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so (M−)+ ⊆ M . If (M−)+ ⊂ M would hold, then there would exist L ∈ M,
with M− ⊂ L ⊂ M , a contradiction. Analogously, if M+ 6= M , then M+ ⊃ M
is called the immediate successor of M , and (M+)− = M .

We now introduce some terminology and results from [47] or [48]. Consider
a compact operator A acting on a Banach space, and let M be a simple
invariant nest of subspaces for A. For each M ∈M, the quotient space M/M−
is at most one-dimensional. This follows from the fact that M−,M is a gap in
the simple nest M, whenever M− ⊂ M . If M ∈M and M− ⊂ M , then there
exists a unique complex number αM , such that (A − αM)M ⊆ M−. On the
other hand, if M− = M , then αM = 0 gives (A− αM)M = AM ⊆ M = M−.

The complex number αM is called the diagonal coefficient of A at M . If
α is a non-zero complex number, then the number of elements in {M | M ∈
M, αM = α} is called the diagonal multiplicity of α. We now state Theorem
2 in [47]; see also Theorem 4.3.10 in [48].

Proposition 5.2.1 Let A be a compact operator, upper triangular with respect
to a simple nest of subspaces M, and let α be a non-zero complex number.
Then α is a diagonal coefficient of A with respect to M if and only if it is
an eigenvalue of A. Moreover, the diagonal multiplicity of α, as a diagonal
coefficient of A with respect to M, is finite and coincides with the algebraic
multiplicity of α, as an eigenvalue of A.

Let A be an operator of finite rank acting on the Banach space X and
let M be a complete nest of subspaces. For the moment, we do not assume
that M is invariant for A. Along with the finite rank operator A, define the
mapping dA : M−→ {0, . . . , rankA} as

dA(M) = dim(AM), M ∈M. (5.3)

A mapping d : M−→ [−∞,∞] is called monotonically increasing, if M1,M2 ∈
M and M1 ⊆ M2 imply that d(M1) ≤ d(M2). The monotonically increasing
mapping d : M −→ [−∞,∞] is called left continuous at M ∈ M, if for each
subnest M1 ⊆M, with M =

∨M1, it follows

sup{d(L) | L ∈M1} = d(M).

Lemma 5.2.2 Let M be a complete nest of subspaces in the Banach space X,
and let A be an operator of finite rank on X. The mapping dA, as defined in
(5.3), is monotonically increasing and left continuous on M.
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Proof It is immediate, that dA is monotonically increasing on M. To
prove that dA is left continuous at M ∈ M, let M1 ⊆ M be a non-empty
subnest, such that M =

∨M1. If x ∈ M , there exist Mn ∈ M1 and xn ∈ Mn

for n ∈ Z+, such that xn
‖.‖−→ x. Consequently, Axn

‖.‖−→ Ax, so

AM ⊆ cl
(⋃{AL | L ∈M1}

)
.

Since dim(AL) ∈ {0, . . . , rank A} for L ∈ M1, the set {AL | L ∈ M1} has a
finite number of elements. Therefore,

cl
(⋃{AL | L ∈M1}

)
= AL1

for some L1 ∈ M1. Since L1 ⊆ M , we get AL1 ⊆ AM , so AL1 = AM . The
lemma is proved. 2

Write dA(M) = {d0, d1, . . . , dr}, with dj−1 < dj for j = 1, . . . , r. In particular,
d0 = 0 and dr = rank A. Define

Mj = {M | M ∈M, dA(M) = dj} , j = 0, . . . , r. (5.4)

Note that Mj 6= ∅, and that Mi∩Mj = ∅, if i 6= j. We state some additional
properties of this partition of M.

Lemma 5.2.3 Let M be a complete nest in X, A a finite rank operator on
X, and Mj for j = 0, . . . , r, as defined in (5.4). Then

1.
∨Mj ∈Mj.

2. If
∧Mj 6∈ Mj, then

∧Mj =
∨Mj−1.

3. The pair
∨Mj−1,

∧Mj is a gap in M.

Moreover, if the nest M is simple, then the quotient spaces
∧Mj/

∨Mj−1

are at most one-dimensional for j = 1, . . . , r.

Proof The first statement follows from the continuity to the left of dA

on M. Assume that
∧Mj 6∈ Mj. Then j > 0. Since

∨Mj−1 ⊂ M for
all M ∈ Mj,

∨Mj−1 ⊆ ∧Mj. Consequently, dj−1 ≤ dA(
∧Mj) < dj, so∧Mj ∈Mj−1. But then

∧Mj ⊆ ∨Mj−1, and the second statement follows.
To prove the third statement, let M ∈M be a subspace, such that

∨Mj−1 ⊂
M ⊂ ∧Mj. Then

∨Mj−1 ⊂ M implies that dA(M) > dj−1 and M ⊂ ∧Mj

implies that dA(M) < dj. Therefore, dA(M) 6∈ dA(M), a contradiction. The
lemma is proved. 2
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Theorem 5.2.4 Let A be an operator of finite rank acting on the Banach
space X. Let M be a simple invariant nest for A. Then there exists a finite
subnest {Mk | k = 0, . . . , n} of M, and complex numbers α1, . . . , αn, such that
the following hold:

1. M0 = (0), Mn = X, Mk−1 ⊂ Mk, k = 1, . . . , n.

2. n ≤ 1 + 2 rank A.

(A− αk)Mk ⊆ Mk−1, k = 1, . . . , n. (5.5)3.

4. If dim(Mk/Mk−1) ≥ 2, then αk = 0.

Proof Let M̃ be the finite subnest of M defined by

M̃ =
{∧Mj,

∨Mj | j = 0, . . . , r
}

.

It is sufficient to prove the following. If (0) 6= M ∈ M̃, then there exist
M̂ ∈ M̃, with M̂ ⊂ M , and αM ∈ C, such that (A − αM)M ⊆ M̂ . If in
addition, αM 6= 0, then dim(M/M̂) = 1. To prove this, we distinguish several
cases.

Case 1 M =
∨Mj =

∧Mj. We will assume that M 6= (0) and hence that
j > 0. By the remark made before Proposition 5.2.1, there exists αM ∈ C,
such that

(A− αM)M = (A− αM)
∨Mj = (A− αM)

∧Mj ⊆

(∧Mj

)
− ⊆

∨Mj−1 ∈Mj−1.

Define M̂ =
∨Mj−1. Then M̂ ⊂ M , and (A− αM)M ⊆ M̂ . Furthermore, by

the second part of Lemma 5.2.3, dim(M/M̂) = 1.

Case 2 M =
∨Mj ⊃ ∧Mj. Then

AM = A
∨Mj ⊆

∧Mj,

since A(
∨Mj) = AL ⊆ L for all L ∈Mj. Take M̂ =

∧Mj.

Case 3 M =
∧Mj =

∨Mj−1. This case is dealt with under Case 1 or
Case 2, since M =

∨Mj−1.
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Case 4 M =
∧Mj ⊃ ∨Mj−1. There exists αM ∈ C, such that

(A− αM)M = (A− αM)
∧Mj ⊆ (

∧Mj)− =
∨Mj−1.

Take M̂ =
∨Mj−1. The second part of Lemma 5.2.3 gives dim(M/M̂) = 1.

The number of elements in M̃ does not exceed 2(r + 1) ≤ 2(rank A + 1).
Therefore, if M̃ = {Mk}n

k=0, then

n ≤ 1 + 2 rank A.

The theorem is established. 2

The following example illustrates the proof of Theorem 5.2.4. It also follows
from the example, that the number 2(rank A + 1) in some cases is the mini-
mal number of subspaces required for a finite subnest to have the properties
mentioned in the theorem.

Example 5.2.5 Consider the (2m + 1)× (2m + 1) upper triangular matrix

A =




0 1 0 0 · · · · · · 0 0 0
1 0 0 · · · · · · 0 0 0

0 1
...

...
...

1
...

...
...

. . .
...

...
...

. . . 0 0 0
0 1 0

1 0
0




,

and let Mk denote the span of the first k standard basis vectors. Since A is
upper triangular, AMk ⊆ Mk for 0 ≤ k ≤ 2m+1. Note that rank A = m, and
define, as in (5.4),

Mj = {M2j, M2j+1}, j = 0, . . . ,m.

The finite subnest M̃, as indicated in the proof, coincides here with the original
maximal nest of subspaces {Mk}2m+1

k=0 . Note that

AM2j+1 ⊆ M2j, AM2j+1 6⊆ M2j−1,

and

(A− I)M2j ⊆ M2j−1, (A− I)M2j 6⊆ M2j−2, j = 1, . . . , m.

Therefore, the nest M̃ does not properly contain a subnest that has the re-
quired properties.
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Proposition 5.2.6 Let A be a bounded operator, and let M1 = {Mk}n
k=0 be a

finite nest of subspaces, with Mk−1 ⊂ Mk for k = 1. . . . , n. Assume there exist
complex numbers α1, . . . , αn, such that

(A− αk)Mk ⊆ Mk−1, k = 1, . . . , n.

If M is any nest of subspaces which contains M1, then for each non-zero
M ∈ M, there exist a complex number αM and an M̂ ∈ M1, with M̂ ⊂ M ,
such that (A− αM)M ⊆ M̂ . In particular, the nest M is invariant for A.

Proof Let M be a nest of subspaces which contains M1, and let M ∈M,
M 6= (0). Let 1 ≤ k ≤ n, such that Mk−1 ⊂ M ⊆ Mk. It follows that

(A− αk)M ⊆ (A− αk)Mk ⊆ Mk−1,

so let M̂ = Mk−1 and αM = αk. 2

We reformulate Theorem 5.2.4 in term of nests of projections (instead of
subspaces).

Proposition 5.2.7 Let A be an operator of finite rank acting on the Banach
space X. Let P be a simple invariant nest of projections for A. Then there ex-
ists a finite subnest {Pk | k = 0, . . . , n} of P, and complex numbers α1, . . . , αn,
such that the following hold:

1. P0 = OX , Pn = IX , Pk−1 < Pk, k = 1, . . . , m.

2. n ≤ 1 + 2 rank A.

(A− αk)Pk = Pk−1(A− αk)Pk, k = 1, . . . , n. (5.6)3.

4. If rank(Pk − Pk−1) ≥ 2, then αk = 0.

Proof Apply Theorem 5.2.4 on the finite rank operator A and its nest
of invariant subspaces {Ran P | P ∈ P}, which is simple also, according
to Theorem 4.1.3. We obtain a finite nest of subspaces (0) = M0 ⊂ M1 ⊂
· · · ⊂ Mn = X, and complex numbers α1, . . . , αn such that (5.5) holds. For
each k ∈ {0, . . . , n}, there exists exactly one projection Pk ∈ P , such that
Ran Pk = Mk. In this manner, equation (5.5) implies equation (5.6). The
proposition is proved. 2

An operator of finite rank n, acting on a Banach space, and upper tri-
angular with respect to a complete nest M of subspaces, is the sum of n
operators of rank one, all upper triangular with respect to M. This result,
due to Spanoudakis [51], is related to Theorem 5.2.4.
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5.3 Complementary Triangular Forms

In this section, we will study complementary triangular forms for pairs of finite
rank operators acting on a Banach space X. We first present a definition of
complementary triangular forms for pairs of bounded operators in general.

The collection C(X) consists of pairs of bounded operators A,Z, such that
there exists a simple nest of projections P , with AP = PAP and PZ = PZP ,
for all P ∈ P .

If A and Z are finite rank operators acting on X, then there exist several
matrix reductions for this pair (see Section 5.1). Proposition 5.1.3 in that
section describes how all these matrix reductions are related. We will now
define complementary triangular forms for a pair of finite rank operators, using
a matrix reduction.

The collection Cf (X) consists of pairs of finite rank operators A, Z, such
that there exists a matrix reduction (M,N, {AM , ZM}) for the pair, with
(AM , ZM) ∈ C(M).

The crux of this definition is that M is finite dimensional, so that the pair
AM , ZM can be identified with a pair of finite matrices. Lemma 3.1.4 then
shows that the collections C(M) and C(m) can be identified, where m =
dim M .

Theorem 5.3.1 Let A and Z be operators of finite rank acting on the Banach
space X. Then (A,Z) ∈ C(X) implies that (A,Z) ∈ Cf (X).

Proof Assume that (A,Z) ∈ C(X), i.e., there exists a simple nest of pro-
jections P , such that AP = PAP and PZ = PZP for all P ∈ P . If we apply
Proposition 5.2.7 to A and P , we obtain a finite subnest PA ⊆ P , which is in-
variant for A as in (5.6), such that PA contains at most 2+2 rank A elements.
In the same fashion we obtain a finite subnest PZ ⊆ Pc which is invariant for
Z as in (5.6), containing at most 2 + 2 rank A elements. Consider the finite
subnest

P1 = PA ∪ Pc
Z ⊆ P .

Write P1 = {P0, P1, . . . , Pn}, with OX = P0 < P1 < · · · < Pn = IX . By
Proposition 5.2.6, applied to A and {Ran Pk | k = 0, . . . , n}, and to Z and
{Ker Pk | k = 0, . . . , n}, it follows that there exist complex numbers α1, . . . , αn,
and ζ1, . . . , ζn, such that
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(A− αk)Pk = Pk−1(A− αk)Pk, Pk(Z − ζk) = Pk(Z − ζk)Pk−1,

where the integer n ≤ 1 + 2 rank A + 2 rank Z. Write ∆Pk = Pk − Pk−1 for
k = 1, . . . , n. Define the finite dimensional subspace

Mk = ∆Pk (Ran A + Ran Z) , k = 1, . . . , n,

and define the space of finite codimension

Nk = Ker(A∆Pk) ∩Ker (Z∆Pk), k = 1, . . . , n.

Then Nk = Ker ∆Pk ⊕ Ñk, where Ñk = Nk ∩Ran ∆Pk. Note that Mk + Ñk is
a subspace of finite codimension in Ran ∆Pk. Therefore, there exists a finite
dimensional subspace Rk ⊆ Ran ∆Pk, such that

(
Mk + Ñk

)
⊕Rk = Ran ∆Pk.

In addition, let N̂k ⊆ Nk, such that

M̂k ⊕ N̂k = Ran ∆Pk,

where M̂k = Mk ⊕Rk. Define

M = M1 ⊕ · · · ⊕Mn, R = R1 ⊕ · · · ⊕Rn,

N = Ñ1 ⊕ · · · ⊕ Ñn, N̂ = N̂1 ⊕ · · · ⊕ N̂n.

As a matter of fact,

N =
n⋂

k=1

Nk.

Indeed, if x = x1 + · · · + xn with xk ∈ Ñk, then mk = x− xk ∈ Ker ∆Pk and
hence x = xk + mk ∈ Ñk + Ker ∆Pk. On the other hand, if x = xk + mk with
xk ∈ Ñk and mk ∈ Ker ∆Pk, then x = (

∑n
k=1 ∆Pk)x =

∑n
k=1 xk ∈ Ñ1⊕· · ·⊕Ñn.

Define M̂ = M ⊕R, then

Ran A + Ran Z ⊆ M̂.

Since N̂ ⊆ N =
⋂n

k=1 [Ker(A∆Pk) ∩Ker(Z∆Pk)], we get
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Ker A ∩Ker Z ⊇ N̂ .

Also,

M̂ ⊕ N̂ = X.

Since A∆Pk =
∑k−1

j=1 ∆PjA∆Pk + αk∆Pk, it follows that

AM̂k ⊆ Ran(A∆Pk) ⊆
k−1∑

j=1

M̂j ⊕ Ran(αk∆Pk).

In addition, Z∆Pk =
∑n

j=k+1 ∆PjZ∆Pk + ζk∆Pk implies

ZM̂k ⊆ Ran(Z∆Pk) ⊆
n∑

j=k+1

M̂j ⊕ Ran(ζk∆Pk).

With respect to the decomposition

X = M̂1 ⊕ · · · M̂n ⊕ N̂ ,

the finite rank operators A and Z assume the forms

A =




α1Î1 ∗ ∗ · · · ∗ O

O α2Î2 ∗ · · · ∗ O

O O α3Î3
. . .

...
...

...
. . . . . . ∗ O

...
. . . αnÎn O

O · · · · · · · · · O ON̂




,

and

Z =




ζ1Î1 O O · · · · · · O

∗ ζ2Î2 O
...

∗ ∗ ζ3Î3
. . .

...
...

...
. . . . . . . . .

...

∗ ∗ · · · ∗ ζnÎn O
O O · · · O O ON̂




.



5.3. COMPLEMENTARY TRIANGULAR FORMS 111

Here Îk denotes the identity operator on the (finite dimensional) subspace M̂k.
We shall estimate the dimension of M̂ from above. First of all,

dim M =
n∑

k=1

dim Mk ≤ n dim(Ran A + Ran Z).

Further,

codim N ≤
n∑

k=1

codim Nk ≤ n codim (Ker A ∩Ker Z) .

Then (M + N)⊕R = X implies dim R ≤ codim N . Therefore,

dim M̂ = dim M + dim R ≤

n (dim[Ran A + Ran Z] + codim (Ker A ∩Ker Z)) .

Finally, use that n ≤ 1 + 2 rank A + 2 rank Z. The theorem is proved. 2

The other inclusion Cf (X) ⊆ C(X) holds true, if the underlying Banach
space X has the following geometric property: On each subspace Y ⊂ X
of finite co-dimension acts a simple nest of projections. It is not difficult to
see that Hilbert spaces and Banach spaces with a Schauder basis have this
geometric property.

Let m1 be a positive integer and let m2 be a nonnegative integer. Recall
(see Chapter 3) that a pair of m1 ×m1 matrices A1, Z1 admits simultaneous
reduction to complementary triangular forms after extension with m2 zeroes, if
the pair A1⊕Om2 , Z1⊕Om2 admits simultaneous reduction to complementary
triangular forms. If such a nonnegative integer m2 exists for the pair A1, Z1,
we say that A1 and Z1 admits simultaneous reduction to complementary tri-
angular forms after extension with zeroes. The following proposition shows
that this notion and the collection Cf (X) are closely related.

Proposition 5.3.2 Let A and Z be finite rank operators acting on the infinite
dimensional Banach space X. Let ({AM , ZM}, M,N) be a matrix reduction for
A and Z. Then the following are equivalent:

1. (A,Z) ∈ Cf (X).

2. The pair AM , ZM admits simultaneous reduction to complementary tri-
angular forms after extension with zeroes.



112 CHAPTER 5. FINITE RANK OPERATORS

Proof To prove that the first statement implies the second one, consider
a matrix reduction ({AM0 , ZM0},M0, N0) for A and Z, such that the pair
AM0 , ZM0 admits simultaneous reduction to complementary triangular forms.
We may assume without loss of generality, that dim M0 ≥ dim M . Indeed, if
this is not the case, choose a positive integer m2, such that m2 + dim M0 ≥
dim M . Then choose an m2-dimensional subspace N2 ⊆ N0. Further, let
N1 ⊆ N0, such that N1⊕N2 = N0, and define M1 = M0⊕N2. In this manner,
we have obtained a matrix reduction ({AM1 , ZM1},M1, N1) for A and Z, with
dim M1 ≥ dim M , and such that the pair AM1 , ZM1 admits simultaneous
reduction to complementary triangular forms.

Write dim M = m, dim M0 = m0, and m0 − m = m2. Then m2 is
a nonnegative integer. Let N2 ⊕ N0 = N be a decomposition of N , with
dim N2 = m2. By Proposition 5.1.3, there exists an invertible operator Q :
M0 −→ M ⊕N2, such that

QAM0Q
−1 = AM ⊕ON2 , QZM0Q

−1 = ZM ⊕ON2 .

It follows that the pair AM , ZM admits simultaneous reduction to complemen-
tary triangular forms after extension with m2 zeroes.

To prove the converse, assume that m2 is a nonnegative integer, and that
the pair AM⊕Om2 , ZM⊕Om2 admits simultaneous reduction to complementary
triangular forms. Let N2 ⊕N1 = N be a decomposition of N , with dim N2 =
m2. Define M1 = M ⊕N2. Note that

AM1 = AM ⊕ON2 , ZM1 = ZM ⊕ON2 .

It follows that ({AM1 , ZM1}, M1, N1) is a matrix reduction for A and Z, and
that the pair AM1 , ZM1 admits simultaneous reduction to complementary tri-
angular forms. 2

If a pair of m1 × m1 matrices A1, Z1 admits simultaneous reduction to
complementary triangular forms after extension with zeroes, it is interesting
to know the required number of extended zeroes. The following result, a
corollary to Theorem 5.3.1, provides an estimate of this number from above.

Corollary 5.3.3 Let m1 be a positive integer, and let A1 and Z1 be m1 ×m1

matrices. Assume that the set

{m1 + m2 | m2 ∈ Z+
0 , (A1 ⊕Om2 , Z1 ⊕Om2) ∈ C(m1 + m2)}

is non-empty. Then the infimum ρ0(A1, Z1) taken over this set satisfies

ρ0(A1, Z1) ≤ 2m1(4m1 − 1).
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Proof Let m2 be a nonnegative integer such that the pair A = A1 ⊕
Om2 , Z = Z1 ⊕ Om2 admits simultaneous reduction to complementary trian-
gular forms. If both A1 and Z1 are invertible, Theorem 3.3.2 gives (A1, Z1) ∈
C(m1), so ρ0(A1, Z1) = m1, and we are done. Therefore, we may assume that
rank A + rank Z ≤ 2 m1 − 1.

Write m = m1+m2 and apply Theorem 5.3.1 on the m×m matrices A and
Z, acting on X = Cm1 ⊕Cm2 . It follows, that there exists a matrix reduction
({AM , ZM},M,N) for A and Z, such that (AM , ZM) ∈ C(M). We may assume
without loss of generality, that dim M ≥ m1. Let ν = dim M −m1.

The triples ({A1, Z1},Cm1 ,Cm2) and ({AM , ZM},M, N) both are matrix
reductions for A and Z. Note that dim M − m1 = ν ≥ 0. By Proposition
5.1.3, there exists an invertible operator Q : M −→ Cm1 ⊕Cν , such that

QAMQ−1 = A1 ⊕Oν , QZMQ−1 = Z1 ⊕Oν .

It follows that (A1 ⊕ Oν , Z1 ⊕ Oν) ∈ C(m1 + ν), since (AM , ZM) ∈ C(M).
Therefore,

ρ0(A1, Z1) ≤ m1 + ν = dim M.

The proof of Theorem 5.3.1 provides

dim M ≤ 2m1(4m1 − 1),

where we used that

1 + 2 rank A + 2 rank Z ≤ 4m1 − 1,

dim(Ran A + Ran Z) ≤ m1, codim(Ker A ∩KerZ) ≤ m1.

This proves the corollary. 2
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Chapter 6

Diagonalizable Operators

In this chapter, analogues to Theorem 2.2.1 are discussed for pairs of bounded
operators acting on the separable Hilbert space l2(Z

+). Indeed, if a pair of
bounded operators on this space contains a finite rank operator and a diagonal-
izable operator, then the pair admits simultaneous reduction to complemen-
tary triangular forms, whenever an obvious necessary condition is met. This
is shown by Propositions 6.4.1 and 6.4.2, and the remarks after the respective
proofs.

On the other hand, there exist pairs of diagonalizable operators that do not
admit simultaneous reduction to complementary triangular forms (Theorem
6.3.1). The pairs of operators under consideration can even be taken self-
adjoint and of trace-class. The construction of these examples is based on
the existence of a unitary infinite matrix that does not admit lower-upper
factorization, even after independently permuting rows and columns (Theorem
6.2.2). Another counterexample, that contradicts even a wider analogue of
Theorem 2.2.1, is presented in Theorem 6.3.4.

6.1 Preliminaries

Consider the separable Hilbert space l2(Z
+) with standard orthonormal basis

{ek}∞k=1. Denote the orthoprojector (of rank m) on span{e1, . . . , em} by Em.
Let

E+ = {Em | m ∈ Z+} ∪ {O, I}
denote the standard nest of orthoprojectors in l2(Z

+).
A bounded operator T on l2(Z

+) can be represented as an infinite matrix
(Tkl)

∞
k,l=1, with respect to {ek}∞k=1, where Tkl = e∗kTel. Of course, not every

115
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infinite matrix represents a bounded operator on l2(Z
+). The diagonal of T is

given by

diag T = ( T11, T22, T33, · · · )T .

A bounded operator T is upper triangular with respect to E+, if TEm =
EmTEm for all m ∈ Z+, i.e., if its infinite matrix as defined above is upper
triangular. In the same fashion, lower triangular and diagonal operators (with
respect to E+) are described. An operator is called upper triangularizable, if
there exists an invertible operator S on l2(Z

+), such that S−1AS is upper
triangular with respect to E+. In the same fashion, lower triangularizable and
diagonalizable operators are defined. Not all operators on a separable Hilbert
space are upper or lower triangularizable. Indeed, both the Volterra operator
of integration V on L2(0, 1), given by

V f(x) =
∫ x

0
f(t)dt,

and its adjoint V ∗ have no eigenvalues. Therefore, it is neither upper nor lower
triangularizable. We will now define standard complementary triangular forms
with respect to E+.

The collection C+ consists of those pairs of bounded operators A,Z on
l2(Z

+), such that there exists an invertible operator S on l2(Z
+), with S−1AS

upper triangular and S−1ZS lower triangular with respect to E+.

If τ is a permutation (i.e., bijection) on Z+, then the permutation operator
Uτ is defined as Uτek = eτ(k) for k ∈ Z+. This notion is analogous to the notion
of a permutation matrix, as defined in [38], p. 64. The following lemma is
easy to prove.

Lemma 6.1.1 Let A and Z be bounded operators acting on l2(Z
+), and let T

be an invertible operator on l2(Z
+). Then the following are equivalent:

1. (A,Z) ∈ C+,

2. (Z∗, A∗) ∈ C+,

3. (T−1AT, T−1ZT ) ∈ C+.

In contrast to the finite matrix situation, (A,Z) ∈ C+ does not imply that
(Z, A) ∈ C+, since there exist upper triangular operators A, which are not
lower triangularizable; see Proposition 6.3.5.
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6.2 Lower-Upper Factorization

In this section, we discuss lower-upper factorization of invertible operators
and explain how this notion is used in the study of simultaneous reduction to
complementary triangular forms. This approach is motivated by a proof of
Theorem 2.2.1. As promised in Section 2.2, we now present this proof (see
also [7]).

Proof of Theorem 2.2.1 We may assume without loss of generality, that
A is a diagonalizable m×m matrix, and Z is any m×m matrix. Let T, V be
invertible m×m matrices, such that T−1AT is a diagonal matrix, and V −1ZV
is a lower triangular matrix.

It is well-known that for the invertible m ×m matrix V −1T , there exists
an m × m permutation matrix Uτ , such that V −1TUτ = LR−1, where L is
an invertible lower triangular matrix, and R is an invertible upper triangular
matrix. Define S = V L = TUτR. Then

S−1AS = R−1(U−1
τ T−1ATUτ )R

is upper triangular, since U−1
τ T−1ATUτ is a diagonal matrix, and R, R−1 are

upper triangular matrices. Further,

S−1ZS = L−1(V −1ZV )L

is the product of lower triangular matrices, and hence lower triangular. 2

The proof of Theorem 2.2.1 suggests a connection between lower-upper
factorization and simultaneous reduction to complementary triangular forms.
Before we study this connection in more detail in the infinite dimensional
context, we give a definition of lower-upper factorization in the general setting.
Note that triangular forms with respect to an arbitrary nest of projections are
defined at the beginning of Section 5.2.

An invertible operator S on a Banach space X admits a lower-upper fac-
torization along a nest of projections P (e.g. P = E+), if there exist invertible
operators L and R, such that S = LR, where L,L−1 are lower triangular and
R,R−1 are upper triangular operators with respect to P .

The argument of the proof of Theorem 2.2.1 suggests the following proposition
for pairs of bounded operators acting on l2(Z

+).

Proposition 6.2.1 Let A and Z be bounded operators acting on the Hilbert
space l2(Z

+). Then (A,Z) ∈ C+ if and only if there exist invertible operators T
and V , such that T−1AT is upper triangular, and V −1ZV is lower triangular
with respect to E+, and V −1T admits a lower-upper factorization along E+.
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Although Proposition 6.2.1 is formulated for operators on a separable in-
finite dimensional Hilbert space, a straightforward analogue of Theorem 2.2.1
does not follow. The reason for this is that, contrary to the finite matrix situa-
tion, not every infinite matrix which represents an invertible bounded operator
admits a lower-upper factorization after permutation of rows and columns.

Indeed, fix n ∈ Z+ and consider the n× n matrix

U(n) =

√
n

n

(
e

2πi(u−1)(v−1)
n

)n

u,v=1
.

This matrix, known as the Fourier matrix , is unitary: If θ = e
2πi
n , then

{U(n)U(n)∗}kl =
1

n

n∑

j=1

U(n)kjU(n)lj =

1

n

n∑

j=1

θ(k−1)(j−1)θ−(l−1)(j−1) =
1

n

n∑

j=1

(θk−l)j−1.

If k = l, then {U(n)U(n)∗}kl = 1. If k 6= l, then λ = θk−l satisfies λn − 1 = 0
and λ 6= 1. Hence

λn − 1

λ− 1
=

n∑

j=1

λj−1 = 0.

Therefore, {U(n)U(n)∗}kl = 0. We conclude that U(n)U(n)∗ = In. Further,
U(n) diagonalizes n×n so-called circulant matrices; see [21], Section 3.2. Using
Fourier matrices of increasing sizes, we define the unitary operator U acting
on l2(Z

+) with respect to the standard basis {ek | k ∈ Z+} as the infinite
diagonal block-matrix

U = U(1)⊕ U(2)⊕ U(3)⊕ · · · . (6.1)

Theorem 6.2.2 The unitary operator U on l2(Z
+) as defined in (6.1) satisfies

the following: For all permutation operators Uρ and Uσ, the operator U∗
ρUUσ

does not admit a lower-upper factorization along E+.

Before we give the proof of theorem 6.2.2, we state the following auxiliary
lemma. The lemma is based on techniques used in [30], Chapter 4.
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Lemma 6.2.3 If an invertible operator S admits a lower-upper factorization
along a bounded nest P of projections, then for each P ∈ P, the operator
PSP + I − P is invertible. Moreover,

sup
P∈P

‖(PSP + I − P )−1‖ < ∞.

Proof Write S = LR, with L,L−1 lower triangular and R,R−1 upper
triangular with respect to P . Fix a projection P ∈ P and write

PSP + (I − P ) = PLRP + (I − P ) = PLPPRP + (I − P ) =

(PLP + I − P )(PRP + I − P ).

Note that PLP + I − P has inverse PL−1P + I − P , and that PRP + I − P
has inverse PR−1P + I − P . Consequently,

(PSP + I − P )−1 = (PR−1P + I − P )(PL−1P + I − P ).

Let C > 0 such that ‖P‖, ‖I − P‖ ≤ C for all P ∈ P . Since

‖PL−1P + (I − P )‖ ≤ C2‖L−1‖+ C

and

‖PR−1P + (I − P )‖ ≤ C2‖R−1‖+ C,

we get

‖(PSP + I − P )−1‖ ≤ ‖PR−1P + (I − P )‖‖PL−1P + (I − P )‖ ≤

C4‖R−1‖‖L−1‖+ C3
(
‖R−1‖+ ‖L−1‖

)
+ C2 < ∞.

The lemma has been proved. 2

Proof of Theorem 6.2.2 Let U be as in (6.1) and let ρ, σ be permutations
on Z+. Further, let Uρ, Uσ be the corresponding permutation operators. Define
the unitary operator

V = U∗
ρUUσ.
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It follows that

Vkl = Uρ(k),σ(l), Ukl = Vρ−1(k),σ−1(l), k, l ∈ Z+.

We need to investigate whether V admits a lower-upper factorization. If
EmV Em + I −Em is not invertible for certain m ∈ Z+, then, by Lemma 6.2.3,
V does not admit a lower-upper factorization. For that reason, we may assume
that all the operators EmV Em + I − Em are invertible (m ∈ Z+). We claim
that this fact leads to the following restriction on the permutations ρ and σ.
The operator

W = UρU
∗
σ = W (1)⊕W (2)⊕W (3)⊕ · · ·

is of the same block-diagonal form as U with respect to the standard basis
{ek}∞k=1, and each matrix W (n) is an n× n permutation matrix. As we shall
see, this is more than we need for the proof of the theorem.

Fix n ∈ Z+ and write κn = n(n−1)
2

. Let In = {κn +1, . . . , κn +n}. To prove
the theorem, it suffices to show that min ρ−1(In) = min σ−1(In), but we will
even prove that

ρ−1(In) = σ−1(In). (6.2)

Write

ρ−1(In) = {k1, . . . , kn}, σ−1(In) = {l1, . . . , ln},
with ku−1 < ku and lu−1 < lu for u = 2, . . . , n. Put k = κn + u and l = κn + v
with 1 ≤ u, v ≤ n. Then

Vρ−1(k),σ−1(l) = Ukl =

√
n

n
e

2πi(u−1)(v−1)
n .

Further, Vρ−1(k),s = 0 if s 6∈ σ−1(In), and Vr,σ−1(l) = 0 if r 6∈ ρ−1(In).

To prove (6.2), we will show that ku = lu for u = 1, . . . , n.

As a first step, we prove that k1 = l1. Indeed, write k = k1 and l = l1.
Then |Vkl| =

√
n/n. If s < l, we obtain that s 6∈ ρ−1(In) and hence that

Vks = 0. In the same manner it follows that Vrl = 0 if r < k. Assume that
k < l. Then the k-th row of EkV Ek + I − Ek consists of zero elements only,
since Vks = 0 for 1 ≤ s ≤ k < l. Therefore, the operator EkV Ek + I − Ek

is not invertible, a contradiction, so k ≥ l. Next, assume that k > l. The
l-th column of ElV El + I −El consists of zero elements only, since Vrl = 0 for
1 ≤ r ≤ l < k. The operator ElV El + I − El is not invertible and again a
contradiction has been obtained. We conclude that k = l.
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Second, fix 2 ≤ p ≤ n and assume that ku = lu for u = 1, . . . , p − 1. We
will prove that kp = lp. First assume that k = kp < lp. The p rows of the
operator EkV Ek + I − Ek labelled k1, . . . , kp have nonzero entries exactly at
the p− 1 column positions l1, . . . , lp−1. This shows that these rows are linear
dependent and so the operator EkV Ek + I−Ek is not invertible. On the other
hand, if kp > lp = l, the operator ElV El + I −El is not invertible. Indeed, the
p columns of this operator labelled l1, . . . , lp have nonzero entries exactly at
the p− 1 row positions k1, . . . , kp−1. Again the columns are linear dependent.
It follows that kp = lp and by induction on p, we get (6.2).

To prove the theorem, fix n ∈ Z+ and let

k = min ρ−1(In) = min σ−1(In).

Note that |Vkk| =
√

n/n and that Vkj = Vjk = 0 for j = 1, . . . , k − 1. Identify
EkV Ek with the k × k matrix of the operator with respect to the first k
standard basis vectors, to obtain

EkV Ek =

(
Ek−1V Ek−1 O

O Vkk

)
.

This k × k matrix is invertible with inverse

(EkV Ek)
−1 =

(
(Ek−1V Ek−1)

−1 O
O V −1

kk

)
.

It follows that

‖(EkV Ek)
−1‖ ≥ |V −1

kk | =
√

n.

But n ∈ Z+ was chosen arbitrary, so

sup
k∈Z+

‖(EkV Ek + I − Ek)
−1‖ ≥ sup

k∈Z+

‖(EkV Ek)
−1‖ = ∞.

The theorem now follows from Lemma 6.2.3, applied to V and E+. 2

6.3 Two Counterexamples

In this section, counterexamples to the matrix result Theorem 2.2.1 are given.
First, we will construct a pair of diagonalizable bounded operators A,Z, which
does not admit simultaneous reduction to standard complementary triangular
forms, i.e., (A,Z) 6∈ C+. In the construction, it is possible to take A and Z
self-adjoint and of trace-class. Second, a counterexample is given to Theorem
2.2.1 in terms of a larger class than C+, which nevertheless can be viewed as a
adequate generalization of C(m).
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Theorem 6.3.1 Let D1 and D2 be bounded operators, diagonal with respect
to E+, each with mutually distinct diagonal elements, and let U be the unitary
operator as defined in (6.1). Let A = D1 and Z = U∗D2U . Then (A,Z) 6∈ C+.
Moreover, the operators A and Z can be chosen self-adjoint and trace-class.

The proof of this theorem requires the following two lemmas.

Lemma 6.3.2 Let D be a bounded diagonal operator acting on l2(Z
+), given

by

Dek = δkek, k ∈ Z+,

with mutually distinct diagonal elements: δk 6= δl if k 6= l. If M is an m-
dimensional invariant subspace for D, then there exist distinct positive integers
τ(1), . . . , τ(m), such that

M = span{eτ(1), . . . , eτ(m)}.

Proof First of all, note that Ker(D − δ) 6= (0) if and only if δ = δk for
some k ∈ Z+. In this case, k is uniquely defined and Ker(D − δ) = span{ek}.
Let M be an m-dimensional invariant subspace for D, and let DM denote
the restriction of D to M . If δ ∈ σ(DM), then Ker(DM − δ) 6= (0). Since
Ker(DM − δ) = Ker(D − δ) ∩M , it follows that Ker(D − δ) 6= (0), so δ = δk

for precisely one k ∈ Z+. This proves that σ(DM) ⊆ {δk | k ∈ Z+}.
To prove that DM has m distinct eigenvalues, assume by way of contra-

diction that there exists k ∈ Z+, such that dimKer(DM − δk)
2 ≥ 2. It then

follows that dimKer(D − δk)
2 ≥ 2, which violates Ker(D − δk)

2 = span{ek}.
Let τ(1), . . . , τ(m) denote the distinct positive integers, such that

σ(DM) = {δτ(1), . . . , δτ(m)}.

Note that Ker(DM − δτ(j)) = Ker(D − δτ(j)) = span{eτ(j)}. We may conclude
that

M = span{eτ(1), . . . , eτ(m)},

and the lemma is proved. 2
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Lemma 6.3.3 Let D be a bounded diagonal operator acting on l2(Z
+), given

by

Dek = δkek, k ∈ Z+,

with mutually distinct diagonal elements: δk 6= δl if k 6= l. Let S be an
invertible operator, such that C = S−1DS is upper triangular with respect to
E+, with diag C = (γ1, γ2, γ3, . . .)

T . Then there exists a permutation τ on
Z+, such that γk = δτ(k), and such that the invertible operator U∗

τ S is upper
triangular with respect to E+.

Proof Fix a positive integer m. The subspace Mm = span{e1, · · · , em}
satisfies DSMm ⊆ SMm. By Lemma 6.3.2, there exist distinct integers
τm(1), . . . , τm(m), such that

SMm = span{eτm(1), . . . , eτm(m)}.

The proof of the lemma implies σ(D |SMm) = {δτm(1), . . . , δτm(m)}. Since the
proper inclusion SMm ⊂ SMm+1 holds for m ∈ Z+, an injective mapping τ on
Z+ can be defined, such that

SMm = span{eτ(1), . . . , eτ(m)}, m ∈ Z+.

Indeed, let τ(1) = τ1(1) and let τ(m + 1) be the unique element in the set
{τm+1(1), . . . , τm+1(m + 1)} which is not an element in {τm(1), . . . , τm(m)}.
Furthermore,

⋃∞
m=1 SMm ⊆ l2(Z

+) is dense, so the mapping τ is also surjective,
and hence a permutation of the positive integers. Now

σ(D |SMm) = σ(C |Mm) = {γ1, . . . , γm},

implies δτ(m) = γm for m ∈ Z+. Further, U∗
τ SMm = Mm for all m ∈ Z+, so

U∗
τ S is upper triangular. 2

If T is an invertible bounded operator on a Hilbert space, we shall use the
short-hand notation T−∗ = (T−1)∗ to indicate the adjoint of the inverse.

Proof of Theorem 6.3.1 Assume there exists an invertible operator S
acting on l2(Z

+), such that S−1AS is upper triangular and S−1ZS is lower
triangular. Apply Lemma 6.3.3 to A = D1 to obtain a permutation operator
Uσ such that R1 = U∗

σS is upper triangular. Further use that (S−1ZS)∗ =
(S−1U∗D2US)∗ = S∗U∗D∗

2US−∗ is upper triangular, and apply Lemma 6.3.3
to D∗

2, to obtain a permutation operator Uρ such that R2 = U∗
ρUS−∗ is upper
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triangular. Note that R = R−1
1 = S−1Uσ is upper triangular and L = R−∗

2 =
U∗

ρUS is lower triangular. Then

LR = U∗
ρUSS−1Uσ = U∗

ρUUσ,

i.e., the unitary operator U admits a lower-upper factorization after permuta-
tions of rows and columns. Here we use that an invertible operator is upper
triangular with respect to E+ if and only if its inverse has this property. A
contradiction has been obtained and the first part of the theorem is proved.

To prove the second part of the theorem, i.e., to obtain that D1 and D2

are self-adjoint trace-class operators, let the diagonals of both D1 and D2 be
l1-sequences of positive numbers. 2

The second counterexample concerns a type of complementary triangular
forms, which is less restrictive than C+. The notion of a simple nest is explained
in Section 4.1. We will provide a counterexample to Theorem 2.2.1, involving
the following definition of complementary triangular forms:

Let CB(X) denote the collection of pairs of bounded operators A,Z on the
Banach space X, such that there exists a bounded, simple nest of projections
P on X with AP = PAP and PZ = PZP for all P ∈ P .

The following operator, known as the Donoghue shift, is one of the operators
featuring in the counterexample. Consider the compact weighted shift C,
acting on l2(Z

+), given by

Ce1 = 0, Cek+1 = γkek, k ∈ Z+, (6.3)

with |γk| ≥ |γk+1| > 0 for k ∈ Z+, and
∑∞

k=1 |γk|2 < ∞. We now state the
counterexample.

Theorem 6.3.4 Let C denote the Donoghue shift as in (6.3), and let D denote
a diagonal operator, with mutually distinct diagonal elements, as in Lemma
6.3.2. Let A = C, and Z = U∗DU , where U is the unitary operator, defined
in (6.1). Then (A, Z) 6∈ CB(H).

To prove this theorem, some preparations are required. The proposition
below concerning the Donoghue shift is based on material in [22]. The result
as stated here is taken from [46] (Theorem 4.12, p.67).

Proposition 6.3.5 The only non-trivial invariant subspaces M for C as de-
fined in (6.3) are the finite dimensional subspaces

M = span{e1, . . . , em}, m ∈ Z+.
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Proposition 6.3.6 Let Q be a bounded projection on the Banach space X,
and let M ⊆ X be a closed subspace. Further, let T denote the restriction of
Q to M . Then M ⊕Ker Q = X if and only if

T : M −→ Ran Q

is invertible. Moreover, in the case when these conditions are satisfied, the
projection P onto M along Ker Q is well-defined and satisfies

‖T−1‖ ≤ ‖P‖ ≤ ‖Q‖ ‖T−1‖.
In particular, if ‖Q‖ = 1, then ‖P‖ = ‖T−1‖.

Proof The first part of the proposition is proved by Proposition 5.2 in [6].
We now prove the second part. Note first that for all m ∈ M , T−1Qm = m =
Pm. Further, P (I −Q) = O implies P = PQ. Therefore,

‖T−1‖ = sup06=m∈M

‖T−1Qm‖
‖Qm‖ = sup0 6=m∈M

‖Pm‖
‖Qm‖ =

sup06=m∈M

‖PQm‖
‖Qm‖ ≤ ‖P‖.

The reversed inequality is obtained as follows. First note that for each x ∈ X,
there exists m ∈ M such that Qx = Qm. Since Qx = 0 if and only if Px = 0,
we may write

‖P‖ = supx6=0

‖Px‖
‖x‖ = supQx6=0

‖Px‖
‖Qx‖

‖Qx‖
‖x‖ ≤

‖Q‖ supQx6=0

‖PQx‖
‖Qx‖ = ‖Q‖ sup06=m∈M

‖PQm‖
‖Qm‖ = ‖Q‖ ‖T−1‖.

This proves the proposition. 2

Proof of Theorem 6.3.4 Assume that (A,Z) ∈ CB(H), so let P be a
bounded, simple nest of projections, such that AP = PAP and PZ = PZP
for all P ∈ P . Fix a nontrivial P ∈ P . By Proposition 6.3.5, AP = PAP
implies that there exists a positive integer m, such that rank P = m. Write
P = Pm. In addition,

Ran Pm = span{e1, . . . , em} = Ran Em.
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Since P is a simple nest of projections on a Hilbert space, {Ran P | P ∈ P} is
a simple nest of subspaces, by Theorem 4.1.3. In fact, we have obtained that

{Ran P | P ∈ P} = {Ran Em | m ∈ Z+} ∪ {O, I}.

Let m ∈ Z+, and consider the equation PmZ = PmZPm. Since Z = U∗DU ,
we get UPmU∗D = UPmU∗DUPmU∗. Taking adjoints at both sides, we obtain
D∗Qm = QmD∗Qm, with Qm = UP ∗

mU∗. Lemma 6.3.2, applied to D∗ and
Ran Qm, implies that there exist distinct positive integers τm(1), . . . , τm(m),
such that

Ran Qm = span{eτm(1), . . . , eτm(m)}.

Since Ran Qm = U(Ker Pm)⊥, it follows that

{Ran Qm | m ∈ Z+} ∪ {O, I}

is a simple nest of subspaces. For that reason, there exists a permutation τ on
Z+, such that for all m ∈ Z+,

{τ(1), . . . , τ(m)} = {τm(1), . . . , τm(m)},

which implies that Ran Qm = UτRan Em. Therefore,

Ker Pm = U∗(Ran Qm)⊥ = U∗UτKer Em, m ∈ Z+.

Proposition 6.3.6 can now be used to calculate ‖Pm‖. Write V = U∗
τ U . Since

Ran Pm = Ran Em and Ker Pm = Ker(V ∗EmV ), it follows that the operator

Tm = V ∗EmV |Ran Em : Ran Em −→ V ∗Ran Em

is invertible. Therefore, the operator T̂m = V ∗(EmV Em+I−Em) is invertible,
and its inverse is given by

T̂−1
m = [(EmV Em)−1 + I − Em]V.

Let x ∈ Ran Em and y ∈ Ker Em. Then

T̂−1
m V ∗(x + y) = (EmV Em)−1x + y = T−1

m V ∗x + y.

Here we used that for x ∈ Ran Em, one gets

(T−1
m V ∗)−1x = V Tmx = V V ∗EmV x = EmV x = (EmV Em)x.
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Further,

‖T̂−1
m V ∗(x + y)‖2 = ‖T−1

m V ∗x‖2 + ‖y‖2 =

‖T−1
m V ∗x‖2 + ‖V ∗y‖2 ≤ max{1, ‖T−1

m ‖2}‖V ∗(x + y)‖2.

It follows that

‖Pm‖ = ‖T−1
m ‖ ≥ ‖T̂−1

m ‖ = ‖(EmU∗
τ UEm + I − Em)−1‖.

The nest P is bounded, so

sup
m∈Z+

‖(EmU∗
τ UEm + I − Em)−1‖ ≤ sup

m∈Z+

‖Pm‖ < ∞,

contrary to elements in the proof of Theorem 6.2.2. The theorem is established.
2

6.4 Pairs with a Finite Rank Operator

In this section, analogues of Theorem 2.2.1 are studied for a pair of bounded
operators acting on the separable Hilbert space l2(Z

+), where at least one of
the operators is of finite rank. The results in this section agree up to a certain
extent with the finite dimensional case.

Proposition 6.4.1 Let Z be a bounded diagonalizable operator, and let A be
an operator of finite rank, both acting on l2(Z

+). Then (A,Z) ∈ C+.

Proof By Lemma 6.1.1, we may assume without loss of generality that Z is
diagonal; say Zek = ζkek for k ∈ Z+. Write rank A = m, and let M = Ran A.
There exist vectors b1, . . . , bm ∈ M , and integers n1 < · · · < nm, such that

bk =
∞∑

j=nk

βkjej, βknk
6= 0,

for k = 1, . . . ,m. The vectors are linearly independent and hence form a basis
in M ; M = span{b1, . . . , bm}. We claim that if N = span{en1 , . . . , enm}⊥, then

M ⊕N = l2(Z
+). (6.4)
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It suffices to prove that M ∩ N = (0). Let x =
∑m

k=1 ξkbk ∈ M ∩ N , and
assume that x 6= 0. Then there exists an integer 1 ≤ p ≤ m, such that
ξ1 = . . . = ξp−1 = 0, and ξp 6= 0. Then e∗np

x = βnpξp 6= 0. On the other
hand, x ∈ N , so e∗np

x = 0. A contradiction has been obtained. Therefore, the
decomposition (6.4) indeed holds. With respect to this decomposition,

A =

(
A1 A12

O O

)
, Z =

(
Z1 O
Z21 Z2

)
.

Let M̂ = span{en1 , . . . , enm}. Since Z is diagonal with respect to {ek}∞k=1,
we get

Z =

(
Ẑ1 O
O D2

)
: M̂ ⊕N −→ M̂ ⊕N.

By Lemma 1.4 in [6], the m×m matrices D1 and Ẑ1 are similar. In particular,
Z1 is diagonalizable.

It follows, by Theorem 2.2.1, that A1 and Z1 admit simultaneous reduction
to complementary triangular forms: There exists a basis s1, . . . , sm for M , such
that

A1sk ∈ span{s1, . . . , sk}, Z1sk ∈ span{sk, . . . , sm}, k = 1, . . . , m.

Define the invertible operator S on l2(Z
+) as

Sej =





sj, j = 1, . . . , m
eπ(j), j = m + 1, . . . , nm

ej, j > nm

,

where π : {m + 1, . . . , nm} −→ {1, . . . , nm}\{n1, . . . , nm} is any bijection.
Write L = span{e1, . . . , em}. Then

S =

(
S1 O
O S2

)
: L⊕ L⊥ −→ M ⊕N.

Further, with respect to L⊕ L⊥, we get

S−1AS =

(
S−1

1 A1S1 S−1
1 A12S2

O O

)
, S−1ZS =

(
S−1

1 Z1S1 O
S−1

2 Z21S1 S−1
2 Z2S2

)
,

where S−1
1 A1S1 is an upper triangular m × m matrix, S−1

1 Z1S1 is a lower
triangular m×m matrix, and S−1

2 Z2S2 is a diagonal operator with respect to
E+. Therefore, (A,Z) ∈ C+. The proposition is proved. 2

The case when A is a bounded diagonalizable operator and Z is of finite
rank is dealt with as follows: Apply Proposition 6.4.1 to the operators Z∗ and
A∗ and use Lemma 6.1.1.
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Proposition 6.4.2 Let A be a bounded diagonalizable operator of finite rank,
and let Z be a bounded operator, which is lower triangularizable. Then (A,Z) ∈
C+.

Proof By Lemma 6.1.1, we may assume without loss of generality, that Z is
lower triangular. To avoid trivialities, we assume that A 6= O. By assumption,
there exists an invertible operator V , such that V −1AV is diagonal. Let the
diagonal of V −1AV be given by

diag(V −1AV ) = ( α1, α2, α3, . . . )T .

Since A is of finite rank, we get m = max{k | k ∈ Z+, αk 6= 0} < ∞. Write
V (Ran Em) = M , and V (Ker Em) = N . Define d(t) = dim (M ∩Ker Et)
for t ∈ Z+, then d : Z+ −→ {0, . . . ,m} is decreasing, and limt→∞d(t) = 0.
Indeed, if limt→∞d(t) > 0, there exists 0 6= x ∈ M , such that x ∈ Ker Et

for all t ∈ Z+, a contradiction. Let τ ∈ Z+, such that d(τ) = 0. Since
M ∩Ker Eτ = (0), and M + Ker A = l2(Z

+), there exists a finite dimensional
subspace R ⊆ Ker A with M ⊕ R ⊕ Ker Eτ = l2(Z

+). The vectors yk = V ek

for k = 1, . . . , m form a basis in M . In addition, let ym+1, . . . , yτ be a basis
in R. Note that Ayk ∈ span{yk} for k = 1, . . . , τ . Therefore, the restriction
of A to Mτ = M ⊕ R is diagonalizable. With respect to the decomposition
Mτ ⊕Ker Eτ = l2(Z

+), we get

A =

(
A1 A12

O O

)
, Z =

(
Z1 O
Z21 Z2

)
,

where A1 is a diagonalizable τ×τ matrix and Z2 is a lower triangular operator.
By Theorem 2.2.1, there exists a basis s1, . . . sτ in Mτ , such that A1sk ∈
span{s1, . . . , sk} and Z1sk ∈ span{sk, . . . , sτ} for k = 1, . . . , τ . The invertible
operator S, defined by

Sej =

{
sj, 1 ≤ j ≤ τ
ej, j > τ

,

puts A and Z into complementary triangular forms. The proposition is proved.
2

If A is a bounded operator, that is upper triangularizable, and Z is di-
agonalizable and of finite rank, then apply Proposition 6.4.2, to obtain that
(Z∗, A∗) ∈ C+. Next, apply Lemma 6.1.1 to obtain (A,Z) ∈ C+. We have now
dealt with all pairs of operators A,Z, that contain a diagonalizable operator
and a finite rank operator, and that satisfy the obvious necessary condition
that A is upper triangularizable and Z is lower triangularizable.
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Dutch Summary

In deze samenvatting, die met name bedoeld is voor de lezer zonder wiskun-
dige voorkennis, zal aan de hand van een analogie het onderwerp van het
proefschrift worden uitgelegd. Verder wordt enige aandacht besteed aan de
motivatie achter het onderzoek. Tenslotte worden enkele resultaten uit het
proefschrift kort toegelicht.

Stelt u zich voor dat u door een beeldentuin van een museum voor moderne
kunst loopt. In die tuin staan twee zwarte beelden, die zeer grillig van vorm
zijn. Voor elk beeld apart is het echter zo, dat vanuit een bepaald perspectief
het silhouet van het beeld zich aftekent als een onmiskenbare geometrische
vorm: een zuivere driehoek. u kunt zich nu voorstellen dat, vanuit bepaalde
plaatsen in de tuin bezien, het silhouet van het ene beeld zich inderdaad als
een driehoek aftekent, terwijl het silhouet van het andere beeld een of andere
grillige vorm is. De vraag die in het proefschrift centraal staat laat zich naar
de analogie van de beeldentuin als volgt vertalen: Bestaat er een plek in de
tuin van waaruit de silhouetten van beide beelden zich aftekenen als zuivere
driehoeken?

De zwarte beelden in de analogie van de beeldentuin zijn in het proefschrift
zogeheten vierkante matrices. Dit zijn vierkante tabellen met getallen, waar
voor het gemak haken omheen zijn gezet. Een voorbeeld van een 3-bij-3 matrix
is




π 6 0
2 0 3

4√
2 0 12


 .

De driehoekige silhouetten van de beelden in de beeldentuin zijn in het proef-
schrift driehoeksvormen van matrices. Bij een matrix in driehoeksvorm staan
op bepaalde plaatsen enkel nullen. We onderscheiden bovendriehoeksmatrices
van de vorm



∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 ,
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en onderdriehoeksmatrices van de vorm


∗ 0 0
∗ ∗ 0
∗ ∗ ∗


 .

In deze laatste twee figuren duiden de asteriksen getallen aan, waarvan de pre-
cieze waarde nu niet van belang is. In dit proefschrift luidt de centrale vraag:
Kan een gegeven tweetal vierkante matrices simultaan worden omgevormd
tot een tweetal matrices, waarvan de een een bovendriehoeksmatrix is en de
ander een onderdriehoeksmatrix is? Als dit mogelijk is, zeggen we dat het be-
treffende paar vierkante matrices een simultane reductie tot complementaire
driehoeksvormen toestaat.

Waarom zijn we eigenlijk zo geinteresseerd in simultane reductie tot com-
plementaire driehoeksvormen? Het antwoord op deze vraag moet worden
gezocht in de systeemtheorie. Met deze theorie kan worden gekeken naar een
systeem, dat we met de griekse letter sigma (Σ) zullen aanduiden, als hieronder
schematisch weergegeven.

Σ- -

De figuur suggereert dat er iets in het systeem wordt gebracht en dat er iets
uit komt. De systemen die in het proefschrift bekeken worden, laten in zekere
zin een rechtlijnig verband zien tussen datgene wat er in wordt gebracht en
datgene wat er vervolgens uit komt.

Nu kan zo’n systeem behoorlijk ingewikkeld zijn. Voor een beter begrip
is het nuttig het systeem stap voor stap te analyseren. In de systeemtheorie
is men dan ook geinteresseerd in de vraag of een systeem in een aantal een-
voudiger systemen kan worden opgedeeld. Zo zou men kunnen proberen een
systeem Σ van complexiteitsgraad drie op te delen in drie systemen Σ1, Σ2 en
Σ3, elk van complexiteitsgraad één. (Een systeem van complexiteitsgraad één
wordt een elementair systeem genoemd.) Deze opdeling is in de onderstaande
figuur schematisch weergegeven.

Σ3 Σ2 Σ1
- - - -

Rest de vraag, of een systeem Σ wel op deze manier kàn worden geanalyseerd.
Bestaande theorie geeft aan, dat een systeem Σ kan worden opgedeeld in ele-
mentaire systemen, waarvan het aantal gelijk is aan de graad van het systeem,
precies als een tweetal vierkante matrices dat met het systeem wordt geasso-
cieerd (we behandelen hier niet hoe dit precies gebeurt) simultane reductie
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tot complementaire driehoeksvormen toestaat. Het blijkt echter, dat niet alle
systemen op deze wijze kunnen worden opgedeeld. Zo kan niet elk systeem van
complexiteitsgraad drie worden opgedeeld in drie elementaire systemen (van
complexiteitsgraad één).

Nu volgt een kort overzicht van de in het proefschrift bewezen resultaten.
In het tweede hoofdstuk van dit proefschrift wordt aangetoond dat elk

systeem kan worden opgedeeld in elementaire systemen. Soms is daarvoor
echter een groter aantal elementaire systemen nodig dan de complexiteits-
graad van het systeem. Zo kan een systeem van complexiteitsgraad drie altijd
in minder dan zes elementaire systemen worden opgedeeld. Deze stelling is
gebaseerd op deels bekende resultaten over simultane reductie tot comple-
mentaire driehoeksvormen voor paren van matrices. Zo maakt een stap in
de bewijsgang gebruik van het in dit proefschrift verkregen feit, dat elk paar
van matrices kan worden uitgebreid tot een paar van grotere matrices, dat
simultane reductie tot complementaire driehoeksvormen toestaat.

In het derde hoofdstuk komt een zeer specifiek type van uitbreidingen van
paren van matrices aan de orde. Het betreft hier zogeheten uitbreidingen
met nullen. De vraag is of elk paar van matrices kan worden uitgebreid met
enkel nullen tot een paar van grotere matrices, dat simultane reductie tot
complementaire driehoeksvormen toestaat. Uit de beschouwingen in het derde
hoofdstuk blijkt dat deze kwestie bijzonder ingewikkeld is.

In het tweede deel van dit proefschrift wordt gekeken naar complementaire
driehoeksvormen voor paren van zogenaamde operatoren. Eindige matrices,
die we tot nu toe hebben besproken, behoren tot die operatoren, maar er zijn
veel meer soorten operatoren. Zo kan bijvoorbeeld de oneindig grote matrix




1
2

1 0 0 · · ·
0 1

4
1
2

0 · · ·
0 0 1

8
1
4

. . .

0 0 0 1
16

. . .
...

...
...

. . . . . .




ook als operator optreden. De stippellijntjes in de figuur suggereren een
oneindige voortzetting van het regelmatige patroon dat zich laat raden. Over
complementaire driehoeksvormen voor paren van eindige matrices is al het een
en ander bekend. De vraag is nu, of voor paren van operatoren in het algemeen
vergelijkbare resultaten kunnen worden verkregen.

In de hoofdstukken vier en vijf worden werkzame en zeer algemene definities
van complementaire driehoeksvormen voor paren van operatoren ontwikkeld,
die consistent zijn met die voor paren van eindige matrices. Desalniettemin
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blijkt in hoofdstuk zes aan de hand van voorbeelden dat in het algemeen voor
paren van operatoren geen gelijksoortige resultaten kunnen worden verwacht
als voor paren van eindige matrices.

Tenslotte verdient opmerking dat er sterke aanwijzingen zijn dat de eerder
genoemde stelling uit hoofdstuk twee in verband kan worden gebracht met
bepaalde besliskundige problemen.


